Safety of GM Crops: Compositional Analysis

Brune PD, Hendrickson Culler A, Ridley WP, Walker K

Task Force #12

Journal of Agricultural and Food Chemistry. 2013;61(35):8243-8247

Abstract: The compositional analysis of genetically modified (GM) crops has continued to be an important part of the overall evaluation in the safety assessment program for these materials. The variety and complexity of genetically engineered traits and modes of action that will be used in GM crops in the near future, as well as our expanded knowledge of compositional variability and factors that can affect composition, raise questions about compositional analysis and how it should be applied to evaluate the safety of traits. The International Life Sciences Institute (ILSI), a nonprofit foundation whose mission is to provide science that improves public health and well-being by fostering collaboration among experts from academia, government, and industry, convened a workshop in September 2012 to examine these and related questions, and a series of papers has been assembled to describe the outcomes of that meeting.

To download this article, click here.


  1. James, C. Global Status of Commercialized Biotech/GM Crops: 2011; ISAAA Brief 43; ISAAA: Ithaca, NY, 2011. LINK
  2. Brookes, G.; Barfoot, P. The income and production effects of biotech crops globally 1996–2010. GM Crops and Food: Biotechnology in Agriculture and the Food Chain; Landes Bioscience: Austin, TX, 2012; 3:4, pp 265– 272. LINK
  3. Codex. Alinorm 03/34: Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commission, Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants (CAC/GL 45-2003), 25th Session, Rome, Italy, 30 June–5 July, 2003; Codex Alimentarius Commission, Rome, Italy, 2003, (accessed Jan 3, 2013). LINK
  4. EFSA. Guidance document of the Scientific Panel on Genetically Modified Organisms for the risk assessment of genetically modified plant and derived food and feed. EFSA J. 2006, 4 (4), 99– 100. LINK
  5. OECD. Safety evaluation of foods derived by modern biotechnology: concepts and principles; Organisation for Economic and Co-operative Development, Paris, France, 1993, (accessed Jan 3, 2013). LINK
  6. FAO/WHO. Safety aspects of genetically modified foods of plant origin. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology. Document WHO/SDE/PHE/FOS/00.6; World Health Organization: Geneva, Switzerland, 2000. LINK
  7. ILSI. (accessed March 5, 2013) .
  8. IFBiC. ILSI International Food Biotechnology Committee; (accessed March 5, 2013).
  9. OECD. Consensus document on compositional considerations for new varieties of rice (Oryza sativa): key food and feed nutrients and anti-nutrients, 2004; (accessed March 6, 2013). LINK
  10. OECD. Consensus documents for the work on the safety of novel foods and feeds: by number; (accessed March 5, 2013). LINK
  11. Cellini, F.; Chesson, A.; Colquhoun, I.; Constable, A.; Davies, H. V.; Engel, K. H.; Gatehouse, A. M. R.; Kärenlampi, S.; Kok, E. J.; Lequay, J.-J.; Lehesranta, S.; Noteborn, H. P. J. M.; Pedersen, J.; Smith, M. Unintended effects and their detection in genetically modified crops Food Chem. Toxicol. 2004, 42, 1089– 1125 LINK
  12. EFSA. Guidance on selection of comparators for the risk assessment of genetically modified plants and derived food and feed. EFSA J. 2011, 9 ( 5), 2149; 20 pp. LINK
  13. Harrigan, G. G.; Lundry, D.; Drury, S.; Berman, K.; Riordan, S. G.; Nemeth, M. A.; Ridley, W. P.; Glenn, K. C. Natural variation in crop composition and the impact of transgenesis Nat. Biotechnol. 2010, 28, 402– 404 LINK
  14. Ridley, W. P.; Harrigan, G. G.; Breeze, M. L.; Nemeth, M. A.; Sidhu, R. S.; Glenn, K. C. Evaluation of compositional equivalence for multitrait biotechnology crops J. Agric. Food Chem. 2011, 59, 5865– 5876 LINK 
  15. Berman, K. H.; Harrigan, G. G.; Nemeth, M. A.; Oliveira, W. S.; Berger, G. U.; Tagliaferro, F. S. Compositional equivalence of insect-protected glyphosate-tolerant soybean MON 87701 × MON 89788 to conventional soybean extends across different world regions and multiple growing seasons J. Agric. Food Chem. 2011, 59, 11643– 11651 LINK 
  16. Sidhu, R. S.; Hammond, B. G.; Fuchs, R. L.; Mutz, J.-N.; Holden, L. R.; George, B.; Olson, T. Glyphosate-tolerant corn: the composition and feeding value of grain from glyphosate-tolerant corn is equivalent to that of conventional corn (Zea mays L.) J. Agric. Food Chem. 2000, 48, 2305– 2312 LINK 
  17. Ridley, W P.; Sidhu, R. S.; Pyla, P. D.; Nemeth, M. A.; Breeze, M. L.; Astwood, J. D. A comparison of the nutritional profile of Roundup Ready corn event NK603 to that of conventional corn (Zea mays L.) J. Agric. Food Chem. 2002, 50, 7235– 7243 LINK 
  18. Herman, R. A.; Phillips, A. M.; Collins, R. A.; Tagliani, L. A.; Claussen, F. A.; Graham, C. D.; Bickers, B. L.; Harris, T. A.; Prochaska, L. M. Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.) J. Agric. Food Chem. 2004, 52, 2726– 2734 LINK 
  19. George, C.; Ridley, W. P.; Obert, J. C.; Nemeth, M. A.; Breeze, M. L.; Astwood, J. D. Corn rootworm protected corn: composition of grain and forage from corn rootworm protected corn event MON 863 is equivalent to that of conventional corn (Zea mays L.) J. Agric. Food Chem. 2004, 52, 4149– 4158 LINK McCann, M. C.; Trujillo, W. A.; Riordan, S. G; Sorbet, R.; Bogdanova, N. N.; Sidhu, R. S. Comparison of the forage and grain composition from insect-protected and glyphosate-tolerant MON 88017 corn to conventional corn (Zea mays L.) J. Agric. Food Chem. 2007, 55, 4034– 4042 LINK 
  20. Herman, R. A.; Storer, N. P.; Phillips, A. M.; Prochaska, L. M.; Windels, P. Compositional assessment of event DAS-59122-7 maize using substantial equivalence Regul. Toxicol. Pharmacol. 2007, 47, 37– 47 LINK
  21. Drury, S. M.; Reynolds, T. L.; Ridley, W. P.; Bogdanova, N. N.; Riordan, S. G.; Nemeth, M. A.; Sorbet, R.; Trujillo, W. A.; Breeze, M. L. Composition of forage and grain from second-generation insect-protected corn MON 89034 is equivalent to that of conventional corn (Zea mays L.) J. Agric. Food Chem. 2008, 56, 4623– 4630 LINK 
  22. Padgette, S. R.; Taylor, N. B.; Nida, D. L.; Bailey, M. R.; MacDonald, J.; Holden, L. R.; Fuchs, R. L. The composition of glyphosate-tolerant soybean seeds is equivalent to conventional soybeans J. Nutr. 1996, 126, 702– 716 LINK
  23. Taylor, N. B.; Fuchs, R. L.; MacDonald, J.; Shariff, A. R.; Padgette, S. R. Compositional analysis of glyphosate-tolerant soybeans treated with glyphosate J. Agric. Food Chem. 1999, 47, 4469– 4473 LINK 
  24. Lundry, D. R.; Ridley, W. P.; Meyer, J. J.; Riordan, S. G.; Nemeth, M. A.; Trujillo, W. A.; Breeze, M. L.; Sorbet, R. Composition of grain, forage and processed fractions from second-generation glyphosate-tolerant soybean, MON 89788, is equivalent to that of conventional soybean (Glycine max L.) J. Agric. Food Chem. 2008, 56, 4611– 4622 LINK 
  25. Berman, K. H.; Harrigan, G. G.; Riordan, S. G.; Nemeth, M. A.; Hanson, C.; Smith, M.; Sorbet, R.; Zhu, E.; Ridley, W. P. Compositions of seed, forage, and processed fractions from insect-protected soybean MON 87701 are equivalent to those of conventional soybean J. Agric. Food Chem. 2009, 57, 11360– 11369 LINK 
  26. Berman, K. H.; Harrigan, G. G.; Riordan, S. G.; Nemeth, M. A.; Hanson, C.; Smith, M.; Sorbet, R.; Zhu, E.; Ridley, W. P. Compositions of forage and grain from second-generation glyphosate-tolerant soybean MON 89788 and insect-protected soybean MON 87701 from Brazil are equivalent to those of conventional soybean (Glycine max) J. Agric. Food Chem. 2010, 58, 6270– 6276 LINK 
  27. Berberich, S. A.; Ream, J. E.; Jackson, T. L.; Wood, R.; Stipanovic, R.; Harvey, P.; Patzer, S.; Fuchs, R. L. Safety assessment of insect-protected cotton: the composition of the cottonseed is equivalent to conventional cottonseed J. Agric. Food Chem. 1996, 44, 365– 371 LINK 
  28. Nida, D. L.; Patzer, S.; Harvey, P.; Stipanovic, R.; Wood, R.; Fuchs, R. L. Glyphosate-tolerant cotton: the composition of the cottonseed is equivalent to conventional cottonseed J. Agric. Food Chem. 1996, 44, 1967– 1974 LINK 
  29. Hamilton, K.; Pyla, P. P.; Breeze, M.; Olson, T.; Li, M.; Robinson, E.; Gallagher, S. P.; Sorbet, R.; Chen, Y. Bollgard II cotton: compositional analysis and feeding studies of cottonseed from insect-protected cotton (Gossypium hirsutum L.) producing the Cry1Ac and Cry2Ab2 proteins J. Agric. Food Chem. 2004, 52, 6969– 6976 LINK 
  30. Oberdoerfer, R. B.; Shillito, R. D.; Beuckeleer, M. de.; Mitten, D. H. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart J. Agric. Food Chem. 2005, 53, 1457– 1465 LINK ,
  31. Obert, J. C.; Ridley, W. P.; Schneider, R. W.; Riordan, S. G.; Nemeth, M. A.; Trujillo, W.; Breeze, M. L.; Sorbet, R.; Astwood, J. D. Composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.) J. Agric. Food Chem. 2004, 52, 1375– 1384 LINK 
  32. McCann, M. C.; Rogan, G. J.; Fitzpatrick, S.; Trujillo, W. A.; Sorbet, R.; Hartnell, G. F.; Riordan, S. G.; Nemeth, M. A. Glyphosate-tolerant alfalfa is compositionally equivalent to conventional alfalfa (Medicago sativa L.) J. Agric. Food Chem. 2006, 54, 7187– 7192 LINK 
  33. Rogan, G. J.; Bookout, J. T.; Duncan, D. R.; Fuchs, R. L.; Lavrik, P. B.; Love, S. L.; Meuth, M.; Olson, T.; Owens, E. D.; Raymond, P. J.; Zalewski, J. Compositional analysis of tubers from insect and virus resistance potato plants J. Agric. Food Chem. 2000, 48, 5936– 5945 LINK 
  34. Chassy, B.; Egnin, M.; Gao, Y.; Glenn, K.; Kleter, G. A.; Nestel, P.; Newell-McGloughlin, M.; Phipps, R. H.; Shillito, R. Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: case studies Compr. Rev. Food Sci. Food Saf. 2008, 7, 50– 113 LINK
  35. Harrigan, G. G.; Ridley, W. P.; Miller, K. D.; Sorbet, R.; Riordan, S. G.; Nemeth, M. A.; Reeves, W.; Pester, T. A. The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn J. Agric. Food Chem. 2009, 57, 9754– 9763 LINK 
  36. Reynolds, T. L.; Nemeth, M. A.; Glenn, K. C.; Ridley, W. P.; Astwood, J. D. Natural variability of metabolites in maize grain: differences due to genetic background J. Agric. Food Chem. 2005, 53, 10061– 10067 LINK 
  37. Harrigan, G. G.; Stork, L. G.; Riordan, S. G.; Reynolds, T. L.; Ridley, W. P.; Masucci, J. D.; MacIsaac, S.; Halls, S. C.; Orth, R.; Smith, R. G.; Wen, L.; Brown, W. E.; Welsch, M.; Riley, R.; McFarland, D.; Pandravada, A.; Glenn, K. C. Impact of genetics and environment on nutritional and metabolite components of maize grain J. Agric. Food Chem. 2007, 55, 6177– 6185 LINK ,
  38. Skogerson, K.; Harrigan, G. G.; Reynolds, T. L.; Halls, S. C.; Ruebelt, M.; Landolino, A.; Pandravada, A.; Glenn, K. C.; Fiehn, O. Impact of genetics and environment on the metabolite composition of maize grain J. Agric. Food Chem. 2010, 58, 3600– 3610 LINK 
  39. Harrigan, G. G.; Glenn, K. C.; Ridley, W. P. Assessing the natural variability in crop composition Regul. Toxicol. Pharmacol. 2010, 58, S13– S20 LINK
  40. Zhou, J.; Berman, K. H.; Breeze, M. L.; Nemeth, M. A.; Oliveira, W. S.; Braga, D. P. V.; Berger, G. U.; Harrigan, G. G. Compositional variability in conventional and glyphosate-tolerant soybean (Glycine max L.) varieties grown in different regions in Brazil J. Agric. Food Chem. 2011, 59, 11652– 11656 LINK 
  41. Seguin, P.; Tremblay, G.; Pageau, D.; Liu, W. Soybean tocopherol concentrations are affected by crop management J. Agric. Food Chem. 2010, 58, 5495– 5501 LINK 
  42. Weber, N.; Halpin, C.; Hannah, L. C.; Jez, J. M.; Kough, J.; Parrott, W. Crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks Plant Physiol. 2012, 160, 1842– 1853 LINK ,
  43. Da Ines, O.; White, C. Gene site-specific insertion in plants. In Site-Directed Insertion of Transgenes; Renault, S.; Duchateau, P., Eds.; Springer: New York, 2013; pp 287– 316. LINK
  44. Parrott, W.; Chassy, B.; Ligon, J.; Meyer, L.; Petrick, J.; Zhou, J.; Herman, R.; Delaney, B.; Levine, M. Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops Food Chem. Toxicol. 2010, 48, 1773– 1790 LINK
  45. Flint-Garcia, S. Genetics and consequences of crop domestication J. Agric. Food Chem. 2013, 10.1021/jf305511d LINK 
  46. Breseghello, F. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.) J. Agric. Food Chem. 2013, 10.1021/jf305531j LINK 
  47. Blair, M. Mineral biofortification strategies for major staples: the example of common bean J. Agric. Food Chem. 2013, 10.1021/jf400774y LINK 
  48. Shewry, P. Natural variation in grain composition of wheat and related cereals J. Agric. Food Chem. 2013, 10.1021/jf3054092 LINK 
  49. Mumm, R. A look at product development with genetically modified crops: examples from maize J. Agric. Food Chem. 2013, 10.1021/jf400685y LINK 
  50. Privalle, L .Bringing a transgenic crop to market: where compositional analysis fits J. Agric. Food Chem. 2013, 10.1021/jf400185q LINK 
  51. Kitta, K. Availability and utility of crop composition data J. Agric. Food Chem. 2013, 10.1021/jf400777v LINK ,
  52. Rogers, H. How composition methods are developed and validated J. Agric. Food Chem. 2013, 10.1021/jf401033d LINK 
  53. Goodman, R. Evaluation of endogenous allergens for the safety evaluation of genetically engineered food crops: a review of methods and relevance J. Agric. Food Chem. 2013, 10.1021/jf400952y LINK
  54. Van Rijssen, W. J. Food safety: importance of the composition of cassava (Manihot esculenta Crantz) J. Agric. Food Chem. 2013, 10.1921/jf401153x LINK
  55. Lovell, D. Biological importance and statistical significance J. Agric. Food Chem. 2013, 10.1021/jf401124y LINK 
  56. Price, W.; Underhill, L. Regulatory perspectives on how composition data are interpreted: food and feed J. Agric. Food Chem. 2013, 10.1021/jf401178d LINK 
  57. Hoekinga, O. A.; Srinivasan, J.; Barry, G.; Bartholomaeus, A. Compositional analysis of genetically modified (GM) crops: key issues and future needs J. Agric. Food Chem. 2013, 10.1021/jf401141r LINK
Scroll to Top