Genetics and Consequences of Crop Domestication
Flint-Garcia SA
Journal of Agricultural and Food Chemistry
January 1, 2013
Task Force #12
Journal of Agricultural and Food Chemistry. 2013;61(35):8267-8276
Abstract: Phenotypic variation has been manipulated by humans during crop domestication, which occurred primarily between 3000 and 10000 years ago in the various centers of origin around the world. The process of domestication has profound consequences on crops, where the domesticate has moderately reduced genetic diversity relative to the wild ancestor across the genome, and severely reduced diversity for genes targeted by domestication. The question that remains is whether reduction in genetic diversity has affected crop production today. A case study in maize (Zea mays) demonstrates the application of understanding relationships between genetic diversity and phenotypic diversity in the wild ancestor and the domesticate. As an outcrossing species, maize has tremendous genetic variation. The complementary combination of genome-wide association mapping (GWAS) approaches, large HapMap data sets, and germplasm resources is leading to important discoveries of the relationship between genetic diversity and phenotypic variation and the impact of domestication on trait variation.
To download this article, click here.
References
- Clark, R. M.; Tavaré, S.; Doebley, J. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus Mol. Biol. Evol. 2005, 22, 2304– 2312 LINK
- Styles, E. D.; Ceska, O. Flavonoid pigments in genetic strains of maize Phytochemistry 1972, 11, 3019– 3021 LINK
- Chopra, S.; Athma, P.; Peterson, T. Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements Plant Cell 1996, 8, 1149– 1158 LINK
- Tollefson, J. J. Evaluating maize for resistance to Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) Maydica 2007, 52, 311– 318 LINK
- Falconer, D. S.; Mackay, T. F. Introduction to Quantitative Genetics; Longman Group: Essex, UK, 1996.
- Mackay, T. F. The genetic architecture of quantitative traits Annu. Rev. Genet. 2001, 35, 303– 339 LINK
- Studer, A. J.; Doebley, J. F. Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1 Genetics 2011, 188, 673– 681 LINK
- Mackay, T. F. C. The genetic architecture of quantitative traits Annu. Rev. Genet. 2001, 35, 303– 339 LINK
- Holland, J. B. Genetic architecture of complex traits in plants Curr. Opin. Plant Biol. 2007, 10, 156– 161 LINK
- Tanksley, S. D.; Nelson, J. C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines Theor. Appl. Genet. 1996, 92, 191– 203 LINK
- Flint-Garcia, S. A.; Thornsberry, J. M.; Buckler, E. S. Structure of linkage disequilibrium in plants Annu. Rev. Plant Biol. 2003, 54, 357– 374 LINK
- Flint-Garcia, S. A.; Thuillet, A.-C.; Yu, J.; Pressoir, G.; Romero, S. M.; Mitchell, S. E.; Doebley, J.; Kresovich, S.; Goodman, M. M.; Buckler, E. S. Maize association population: a high-resolution platform for quantitative trait locus dissection Plant J. 2005, 44, 1054– 1064 LINK
- Bernardo, R. Breeding for Quantitative Traits; Stemma Press: Minneapolis, MN, 2002.
- Charlesworth, D.; Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783– 796 LINK
- Birchler, J. A.; Yao, H.; Chudalayandi, S.; Vaiman, D.; Veitia, R. A. Heterosis Plant Cell Online 2010, 22, 2105– 2112 LINK
- Shull, G. H. A pure line method of corn breeding Am. Breeders Assoc. Rep. 1909, 5, 51– 59
- Sleper, D. A.; Poehlman, J. M. Breeding Field Crops; Wiley: New York, 2006.
- Fehr, W. R. Principles of Cultivar Development; McGraw-Hill: New York, 1987.
- Allard, R. W. Principles of Plant Breeding; Wiley: New York, 1999.
- Doebley, J. F.; Gaut, B. S.; Smith, B. D. The molecular genetics of crop domestication Cell 2006, 127, 1309– 1321 LINK
- Donald, C. M. The breeding of crop ideotypes Euphytica 1968, 17, 385– 403 LINK
- Tanksley, S. D.; McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild Science 1997, 277, 1063– 1066 LINK
- Paran, I.; van der Knaap, E. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper J. Exp. Bot. 2007, 58, 3841– 3852 LINK
- Rodríguez, G. R.; Muños, S.; Anderson, C.; Sim, S.-C.; Michel, A.; Causse, M.; Gardener, B. B. M.; Francis, D.; van der Knaap, E. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity Plant Physiol. 2011, 156, 275– 285 LINK
- Goodman, M. M.; Brown, W. L. Races of corn. In Corn and Corn Improvement, 3rd ed.; Agronomy No. 18; Sprague, G. F.; Dudley, J. W., Eds.; ASA-CSSA-SSSA: Madison, WI, 1988; pp 33– 79.
- Troyer, A. F. Background of U.S. hybrid corn Crop Sci. 1999, 39, 601– 626 LINK
- Vavilov, N. I. Studies on the origin of cultivated plants. Bull. Appl. Bot. 1926, 16.
- Rosenthal, J. P.; Dirzo, R. Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives Evol. Ecol. 1997, 11, 337– 355 LINK
- Panthee, D. R.; Chen, F. Genomics of fungal disease resistance in tomato Curr. Genomics 2010, 11, 30– 39 LINK
- Lenne, J. M.; Wood, D. Plant disease and the use of wild germplasm Annu. Rev. Phytopathol. 1991, 29, 35– 63 LINK
- Harlan, J. Genetic resources in wild relatives of crops Crop Sci. 1976, 16, 329– 333 LINK
- Hoisington, D.; Khairallah, M.; Reeves, T.; Ribaut, J.-M.; Skovmand, B.; Suketoshi, T.; Warburton, M. Plant genetic resources: what can they contribute toward increased crop productivity? Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5937– 5943 LINK
- Moeller, D. A.; Tiffin, P. Geographic variation in adaptation at the molecular level: a case study of plant immunity genes Evolution 2008, 62, 3069– 3081 LINK
- Darwin, C. The Origin of Species by Means of Natural Selection; J. Murray: London, UK, 1859.
- Darwin, C. The Variation of Plants and Animals under Domestication; J. Murray: London, UK, 1868.
- Tenaillon, M. I.; U’Ren, J.; Tenaillon, O.; Gaut, B. S. Selection versus demography: a multilocus investigation of the domestication process in maize Mol. Biol. Evol. 2004, 21, 1214– 1225 LINK
- Innan, H.; Kim, Y. Pattern of polymorphism after strong artificial selection in a domestication event Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 10667– 10672 LINK
- Paterson, A. H.; Lin, Y.-R.; Li, Z.; Schertz, K. F.; Doebley, J. F.; Pinson, S. R. M.; Liu, S.-C.; Stansel, J. W.; Irvine, J. E. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci Science 1995, 269, 1714– 1718 LINK
- Morrell, P. L.; Clegg, M. T. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 3289– 3294 LINK
- Purugganan, M. D.; Fuller, D. Q. The nature of selection during plant domestication Nature 2009, 457, 843– 848 LINK
- Komatsuda, T.; Pourkheirandish, M.; He, C.; Azhaguvel, P.; Kanamori, H.; Perovic, D.; Stein, N.; Graner, A.; Wicker, T.; Tagiri, A.; Lundqvist, U.; Fujimura, T.; Matsuoka, M.; Matsumoto, T.; Yano, M. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1424– 1429 LINK
- Taketa, S.; Amano, S.; Tsujino, Y.; Sato, T.; Saisho, D.; Kakeda, K.; Nomura, M.; Suzuki, T.; Matsumoto, T.; Sato, K.; Kanamori, H.; Kawasaki, S.; Takeda, K. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 4062– 4067 LINK
- Sang, T. Genes and mutations underlying domestication transitions in grasses Plant Physiol. 2009, 149, 63– 70 LINK
- Matsuoka, Y. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification Plant Cell Physiol. 2011, 52, 750– 764 LINK
- Harlan, J. R.; de Wet, M. J.; Price, E. G. Comparative evolution of cereals Evolution 1973, 27, 311– 325 LINK
- Simons, K. J.; Fellers, J. P.; Trick, H. N.; Zhang, Z.; Tai, Y.-S.; Gill, B. S.; Faris, J. D. Molecular characterization of the major wheat domestication gene Q Genetics 2006, 172, 547– 555 LINK
- Peng, J.; Ronin, Y.; Fahima, T.; Röder, M. S.; Li, Y.; Nevo, E.; Korol, A. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 2489– 2494 LINK
- Maccaferri, M.; Sanguineti, M. C.; Noli, E.; Tuberosa, R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection Mol. Breed. 2005, 15, 271– 290 LINK
- Crossa, J.; Burgueño, J.; Dreisigacker, S.; Vargas, M.; Herrera-Foessel, S. A.; Lillemo, M.; Singh, R. P.; Trethowan, R.; Warburton, M.; Franco, J.; Reynolds, M.; Crouch, J. H.; Ortiz, R. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure Genetics 2007, 177, 1889– 1913 LINK
- Hillel, J.; Feldman, M. W.; Simchen, G. Mating systems and population structure in two closely related species of the wheat group I. Variation between and within populations Heredity 1973, 30, 141– 167 LINK
- Caicedo, A. L.; Williamson, S. H.; Hernandez, R. D.; Boyko, A.; Fledel-Alon, A.; York, T. L.; Polato, N. R.; Olsen, K. M.; Nielsen, R.; McCouch, S. R.; Bustamante, C. D.; Purugganan, M. D. Genome-wide patterns of nucleotide polymorphism in domesticated rice PLoS Genet. 2007, 3, e163 LINK
- Oka, H.-I.; Morishima, H. Phylogenetic differentiation of cultivated rice, XXIII. Potentiality of wild progenitors to evolve the indica and japonica types of rice cultivars Euphytica 1982, 31, 41– 50 LINK
- Molina, J.; Sikora, M.; Garud, N.; Flowers, J. M.; Rubinstein, S.; Reynolds, A.; Huang, P.; Jackson, S.; Schaal, B. A.; Bustamante, C. D.; Boyko, A. R.; Purugganan, M. D. Molecular evidence for a single evolutionary origin of domesticated rice Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 8351– 8356 LINK
- Li, C.; Zhou, A.; Sang, T.Rice domestication by reducing shattering Science 2006, 311, 1936– 1939 LINK
- Sugimoto, K.; Takeuchi, Y.; Ebana, K.; Miyao, A.; Hirochika, H.; Hara, N.; Ishiyama, K.; Kobayashi, M.; Ban, Y.; Hattori, T.; Yano, M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 5792– 5797 LINK
- Ashikari, M.; Sakakibara, H.; Lin, S.; Yamamoto, T.; Takashi, T.; Nishimura, A.; Angeles, E. R.; Qian, Q.; Kitano, H.; Matsuoka, M. Cytokinin oxidase regulates rice grain production Science 2005, 309, 741– 745 LINK
- Kovach, M. J.; Sweeney, M. T.; McCouch, S. R. New insights into the history of rice domestication Trends Genet. 2007, 23, 578– 587 LINK
- Hymowitz, T.; Kaizuma, N. Soybean seed protein electrophoresis profiles from 15 Asian countries or regions: hypotheses on paths of dissemination of soybeans from China Econ. Bot. 1981, 35, 10– 23 LINK
- Xu, D.; Abe, J.; Gai, J.; Shimamoto, Y. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean Theor. Appl. Genet. 2002, 105, 645– 653 LINK
- Zhao, T. J.; Gai, J. Y. The origin and evolution of cultivated soybeans Glycine max (L.) Merr. Sci. Agric. Sinica 2004, 37, 954– 962
- Guo, J.; Wang, Y.; Song, C.; Zhou, J.; Qiu, L.; Huang, H.; Wang, Y. A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences Ann. Bot. 2010, 106, 505– 514 LINK
- Hyten, D. L.; Song, Q.; Zhu, Y.; Choi, I.-Y.; Nelson, R. L.; Costa, J. M.; Specht, J. E.; Shoemaker, R. C.; Cregan, P. B. Impacts of genetic bottlenecks on soybean genome diversity Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16666– 16671 LINK
- Stupar, R. M. Into the wild: the soybean genome meets its undomesticated relative Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 21947– 21948 LINK
- Broich, S.; Palmer, R. A cluster analysis of wild and domesticated soybean phenotypes Euphytica 1980, 29, 23– 32 LINK
- Liu, B.; Fujita, T.; Yan, Z.-H.; Sakamoto, S.; Xu, D.; Abe, J. QTL mapping of domestication-related traits in soybean (Glycine max) Ann. Bot. 2007, 100, 1027– 1038 LINK
- Liu, B.; Watanabe, S.; Uchiyama, T.; Kong, F.; Kanazawa, A.; Xia, Z.; Nagamatsu, A.; Arai, M.; Yamada, T.; Kitamura, K.; Masuta, C.; Harada, K.; Abe, J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1 Plant Physiol. 2010, 153, 198– 210 LINK
- Tian, Z.; Wang, X.; Lee, R.; Li, Y.; Specht, J. E.; Nelson, R. L.; McClean, P. E.; Qiu, L.; Ma, J. Artificial selection for determinate growth habit in soybean Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 8563– 8568 LINK
- Peralta, I. E.; Spooner, D. M. History, origin and early cultivation of tomato (Solanaceae). In Genetic Improvement of Solanaceous Crops; Razdan, M. K.; Mattoo, A. K., Eds.; Science Publishers: Enfield, NH, 2007; Vol. 2, pp 1– 27.
- Blanca, J.; Cañizares, J.; Cordero, L.; Pascual, L.; Diez, M. J.; Nuez, F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato PLoS ONE 2012, 7, e48198 LINK
- Miller, J. C.; Tanksley, S. D. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon Theor. Appl. Genet. 1990, 80, 437– 448 LINK
- Doganlar, S.; Frary, A.; Daunay, M.-C.; Lester, R. N.; Tanksley, S. D. Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant Genetics 2002, 161, 1713– 1726 LINK
- Zhang, N.; Brewer, M.; Knaap, E. Fine mapping of fw3.2 controlling fruit weight in tomato Theor. Appl. Genet. 2012, 125, 273– 284 LINK
- Gepts, P. Origin and evolution of common bean: past events and recent trends HortScience 1998, 33, 1124– 1130
- Kaplan, L.; Lynch, T. F. Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-Columbian agriculture Econ. Bot. 1999, 53, 261– 272 LINK
- Singh, S.; Gepts, P.; Debouck, D. Races of common bean (Phaseolus vulgaris, Fabaceae) Econ. Bot. 1991, 45, 379– 396 LINK
- Papa, R.; Bellucci, E.; Rossi, M.; Leonardi, S.; Rau, D.; Gepts, P.; Nanni, L.; Attene, G. Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples Ann. Bot. 2007, 100, 1039– 1051 LINK
- Blair, M. W.; Soler, A.; Cortés, A. J. Diversification and population structure in common beans (Phaseolus vulgaris L.) PLoS ONE 2012, 7, e49488 LINK
- Smith, B. D. Origins of agriculture in eastern North America Science 1989, 246, 1566– 1571 LINK
- Burke, J. M.; Burger, J. C.; Chapman, M. A. Crop evolution: from genetics to genomics Curr. Opin. Genet. Dev. 2007, 17, 525– 532 LINK
- Burke, J. M.; Tang, S.; Knapp, S. J.; Rieseberg, L. H. Genetic analysis of sunflower domestication Genetics 2002, 161, 1257– 1267 LINK
- Chapman, M. A.; Burke, J. M. Evidence of selection on fatty acid biosynthetic genes during the evolution of cultivated sunflower Theor. Appl. Genet. 2012, 125, 897– 907 LINK
- Blackman, B. K.; Rasmussen, D. A.; Strasburg, J. L.; Raduski, A. R.; Burke, J. M.; Knapp, S. J.; Michaels, S. D.; Rieseberg, L. H. Contributions of flowering time genes to sunflower domestication and improvement Genetics 2011, 187, 271– 287 LINK
- USDA-NASS National Statistics for Corn; http://www.nass.usda.gov (accessed Oct 15, 2012).
- FAO Crops Primary Equivalent; http://faostat.fao.org.
- Matsuoka, Y.; Vigouroux, Y.; Goodman, M. M.; Sanchez, G. J.; Buckler, E.; Doebley, J. A single domestication for maize shown by multilocus microsatellite genotyping Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 6080– 6084 LINK
- Vigouroux, V.; Glaubitz, J. C.; Matsuoka, Y.; Goodman, M. M.; Sánchez, G, J.; Doebley, J. Population structure and genetic diversity of new world maize races assessed by DNA microsatellites Am. J. Bot. 2008, 95, 1240– 1253 LINK
- Schnable, P. S.; Ware, D.; Fulton, R. S.; Stein, J. C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T. A.; Minx, P.; Reily, A. D.; Courtney, L.; Kruchowski, S. S.; Tomlinson, C.; Strong, C.; Delehaunty, K.; Fronick, C.; Courtney, B.; Rock, S. M.; Belter, E.; Du, F.; Kim, K.; Abbott, R. M.; Cotton, M.; Levy, A.; Marchetto, P.; Ochoa, K.; Jackson, S. M.; Gillam, B.; Chen, W.; Yan, L.; Higginbotham, J.; Cardenas, M.; Waligorski, J.; Applebaum, E.; Phelps, L.; Falcone, J.; Kanchi, K.; Thane, T.; Scimone, A.; Thane, N.; Henke, J.; Wang, T.; Ruppert, J.; Shah, N.; Rotter, K.; Hodges, J.; Ingenthron, E.; Cordes, M.; Kohlberg, S.; Sgro, J.; Delgado, B.; Mead, K.; Chinwalla, A.; Leonard, S.; Crouse, K.; Collura, K.; Kudrna, D.; Currie, J.; He, R.; Angelova, A.; Rajasekar, S.; Mueller, T.; Lomeli, R.; Scara, G.; Ko, A.; Delaney, K.; Wissotski, M.; Lopez, G.; Campos, D.; Braidotti, M.; Ashley, E.; Golser, W.; Kim, H.; Lee, S.; Lin, J.; Dujmic, Z.; Kim, W.; Talag, J.; Zuccolo, A.; Fan, C.; Sebastian, A.; Kramer, M.; Spiegel, L.; Nascimento, L.; Zutavern, T.; Miller, B.; Ambroise, C.; Muller, S.; Spooner, W.; Narechania, A.; Ren, L.; Wei, S.; Kumari, S.; Faga, B.; Levy, M. J.; McMahan, L.; Van Buren, P.; Vaughn, M. W.; Ying, K.; Yeh, C.-T.; Emrich, S. J.; Jia, Y.; Kalyanaraman, A.; Hsia, A.-P.; Barbazuk, W. B.; Baucom, R. S.; Brutnell, T. P.; Carpita, N. C.; Chaparro, C.; Chia, J.-M.; Deragon, J.-M.; Estill, J. C.; Fu, Y.; Jeddeloh, J. A.; Han, Y.; Lee, H.; Li, P.; Lisch, D. R.; Liu, S.; Liu, Z.; Nagel, D. H.; McCann, M. C.; SanMiguel, P.; Myers, A. M.; Nettleton, D.; Nguyen, J.; Penning, B. W.; Ponnala, L.; Schneider, K. L.; Schwartz, D. C.; Sharma, A.; Soderlund, C.; Springer, N. M.; Sun, Q.; Wang, H.; Waterman, M.; Westerman, R.; Wolfgruber, T. K.; Yang, L.; Yu, Y.; Zhang, L.; Zhou, S.; Zhu, Q.; Bennetzen, J. L.; Dawe, R. K.; Jiang, J.; Jiang, N.; Presting, G. G.; Wessler, S. R.; Aluru, S.; Martienssen, R. A.; Clifton, S. W.; McCombie, W. R.; Wing, R. A.; Wilson, R. K. The B73 maize genome: complexity, diversity, and dynamics Science 2009, 326, 1112– 1115 LINK
- Paterson, A. H.; Bowers, J. E.; Chapman, B. A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9903– 9908 LINK
- Feschotte, C.; Jiang, N.; Wessler, S. R. Plant transposable elements: where genetics meets genomics Nat. Rev. Genet. 2002, 3, 329– 341 LINK
- ENCODE: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57– 74 LINK
- Tenaillon, M. I.; Sawkins, M. C.; Long, A. D.; Gaut, R. L.; Doebley, J. F.; Gaut, B. S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.) Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 9161– 9166 LINK
- Liu, K.; Goodman, M. M.; Muse, S. V.; Smith, J. S.; Buckler, E. S.; Doebley, J. F. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites Genetics 2003, 165, 2117– 2128 LINK
- Gore, M. A.; Chia, J.-M.; Elshire, R. J.; Sun, Q.; Ersoz, E. S.; Hurwitz, B. L.; Peiffer, J. A.; McMullen, M. D.; Grills, G. S.; Ross-Ibarra, J.; Ware, D. H.; Buckler, E. S. A first-generation haplotype map of maize Science 2009, 326, 1115– 1117 LINK
- Fu, H.; Dooner, H. K. Intraspecific violation of genetic colinearity and its implications in maize Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9573– 9578 LINK
- Morgante, M.; Brunner, S.; Pea, G.; Fengler, K.; Zuccolo, A.; Rafalski, A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize Nat. Genet. 2005, 37, 997– 1002 LINK
- Chia, J.-M.; Song, C.; Bradbury, P. J.; Costich, D.; de Leon, N.; Doebley, J.; Elshire, R. J.; Gaut, B.; Geller, L.; Glaubitz, J. C.; Gore, M.; Guill, K. E.; Holland, J.; Hufford, M. B.; Lai, J.; Li, M.; Liu, X.; Lu, Y.; McCombie, R.; Nelson, R.; Poland, J.; Prasanna, B. M.; Pyhajarvi, T.; Rong, T.; Sekhon, R. S.; Sun, Q.; Tenaillon, M. I.; Tian, F.; Wang, J.; Xu, X.; Zhang, Z.; Kaeppler, S. M.; Ross-Ibarra, J.; McMullen, M. D.; Buckler, E. S.; Zhang, G.; Xu, Y.; Ware, D. Maize HapMap2 identifies extant variation from a genome in flux Nat. Genet. 2012, 40, 803– 807 LINK
- Swanson-Wagner, R. A.; Eichten, S. R.; Kumari, S.; Tiffin, P.; Stein, J. C.; Ware, D.; Springer, N. M. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor Genome Res. 2010, 20, 1689– 1699 LINK
- Beadle, G. W. The ancestry of corn Sci. Am. 1980, 242, 112– 119 LINK
- Beadle, G. W. The mystery of maize Field Mus. Natl. Hist. Bull. 1972, 43, 2– 11
- Doebley, J.; Stec, A. Genetic analysis of the morphological differences between maize and teosinte Genetics 1991, 129, 285– 295 LINK
- Hubbard, L.; McSteen, P.; Doebley, J.; Hake, S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte Genetics 2002, 162, 1927– 1935 LINK
- Wang, R. L.; Stec, A.; Hey, J.; Lukens, L.; Doebley, J. The limits of selection during maize domestication Nature 1999, 398, 236– 239 LINK
- Studer, A.; Zhao, Q.; Ross-Ibarra, J.; Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1 Nat. Genet. 2011, 43, 1160– 1163 LINK
- Dorweiler, J.; Stec, A.; Kermicle, J.; Doebley, J. Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution Science 1993, 262, 233– 235 LINK
- Wang, H.; Nussbaum-Wagler, T.; Li, B.; Zhao, Q.; Vigouroux, Y.; Faller, M.; Bomblies, K.; Lukens, L.; Doebley, J. F. The origin of the naked grains of maize Nature 2005, 436, 714– 719 LINK
- Wright, S. I.; Vroh Bi, I.; Schroeder, S. G.; Yamasaki, M.; Doebley, J. F.; McMullen, M. D.; Gaut, B. S. The effects of artificial selection on the maize genome Science 2005, 308, 1310– 1314 LINK
- Hufford, M. B.; Xu, X.; van Heerwaarden, J.; Pyhajarvi, T.; Chia, J.-M.; Cartwright, R. A.; Elshire, R. J.; Glaubitz, J. C.; Guill, K. E.; Kaeppler, S. M.; Lai, J.; Morrell, P. L.; Shannon, L. M.; Song, C.; Springer, N. M.; Swanson-Wagner, R. A.; Tiffin, P.; Wang, J.; Zhang, G.; Doebley, J.; McMullen, M. D.; Ware, D.; Buckler, E. S.; Yang, S.; Ross-Ibarra, J. Comparative population genomics of maize domestication and improvement Nat. Genet. 2012, 44, 808– 811 LINK
- Remington, D. L.; Thornsberry, J. M.; Matsuoka, Y.; Wilson, L. M.; Whitt, S. R.; Doebley, J.; Kresovich, S.; Goodman, M. M.; Buckler, E. S. Structure of linkage disequilibrium and phenotypic associations in the maize genome Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 11479– 11484 LINK
- Thornsberry, J. M.; Goodman, M. M.; Doebley, J.; Kresovich, S.; Nielsen, D.; Buckler, E. S. Dwarf8 polymorphisms associate with variation in flowering time Nat. Genet. 2001, 28, 286– 289 LINK
- Hansey, C. N.; Johnson, J. M.; Sekhon, R. S.; Kaeppler, S. M.; de Leon, N. Genetic diversity of a maize association population with restricted phenology Crop Sci. 2011, 51, 704– 715 LINK
- Yang, X.; Yan, J.; Shah, T.; Warburton, M.; Li, Q.; Li, L.; Gao, Y.; Chai, Y.; Fu, Z.; Zhou, Y.; Xu, S.; Bai, G.; Meng, Y.; Zheng, Y.; Li, J. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection Theor. Appl. Genet. 2010, 121, 417– 431 LINK
- Andersen, J. R.; Schrag, T.; Melchinger, A. E.; Zein, I.; Lübberstedt, T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.) Theor. Appl. Genet. 2005, 111, 206– 217 LINK
- Camus-Kulandaivelu, L.; Veyrieras, J. B.; Madur, D.; Combes, V.; Fourmann, M.; Barraud, S.; Dubreuil, P.; Gouesnard, B.; Manicacci, D.; Charcosset, A. Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene Genetics 2006, 172, 2449– 2463 LINK
- Palaisa, K. A.; Morgante, M.; Williams, M.; Rafalski, A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci Plant Cell 2003, 15, 1795– 1806 LINK
- Yan, J.; Kandianis, C. B.; Harjes, C. E.; Bai, L.; Kim, E.-H.; Yang, X.; Skinner, D. J.; Fu, Z.; Mitchell, S.; Li, Q.; Fernandez, M. G. S.; Zaharieva, M.; Babu, R.; Fu, Y.; Palacios, N.; Li, J.; DellaPenna, D.; Brutnell, T.; Buckler, E. S.; Warburton, M. L.; Rocheford, T. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain Nat. Genet. 2010, 42, 322– 327 LINK
- Yan, J.; Warburton, M.; Crouch, J. Association mapping for enhancing maize (Zea mays L.) genetic improvement Crop Sci. 2011, 51, 433– 449 LINK
- Cook, J. P.; McMullen, M. D.; Holland, J. B.; Tian, F.; Bradbury, P.; Ross-Ibarra, J.; Buckler, E. S.; Flint-Garcia, S. A. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels Plant Physiol. 2012, 158, 824– 834 LINK
- Krill, A. M.; Kirst, M.; Kochian, L. V.; Buckler, E. S.; Hoekenga, O. A. Association and linkage analysis of aluminum tolerance genes in maize PLoS ONE 2010, 5, e9958 LINK
- Szalma, S. J.; Buckler, E. S.; Snook, M. E.; McMullen, M. D. Association analysis of flavonoid structural loci for maysin and chlorogenic acid synthesis in maize silks Theor. Appl. Genet. 2005, 110, 1324– 1333 LINK
- Wilson, L. M.; Whitt, S. R.; Ibáñez, A. M.; Rocheford, T. R.; Goodman, M. M.; Buckler, E. S. I. Dissection of maize kernel composition and starch production by candidate gene association Plant Cell 2004, 16, 2719– 2733 LINK
- Harjes, C. E.; Rocheford, T. R.; Bai, L.; Brutnell, T. P.; Kandianis, C. B.; Sowinski, S. G.; Stapleton, A. E.; Vallabhaneni, R.; Williams, M.; Wurtzel, E. T.; Yan, J.; Buckler, E. S. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification Science 2008, 319, 330– 333 LINK
- Butron, A.; Chen, Y. C.; Rottinghaus, G. E.; McMullen, M. D. Genetic variation at bx1 controls DIMBOA content in maize Theor. Appl. Genet. 2010, 120, 721– 734 LINK
- Zhang, N.; Gur, A.; Gibon, Y.; Sulpice, R.; Flint-Garcia, S.; McMullen, M. D.; Stitt, M.; Buckler, E. S. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity PLoS ONE 2010, 5, e9991 LINK
- Yu, J.; Holland, J. B.; McMullen, M. D.; Buckler, E. S. Genetic design and statistical power of nested association mapping in maize Genetics 2008, 178, 539– 551 LINK
- McMullen, M. D.; Kresovich, S.; Villeda, H. S.; Bradbury, P.; Li, H.; Sun, Q.; Flint-Garcia, S.; Thornsberry, J.; Acharya, C.; Bottoms, C.; Brown, P.; Browne, C.; Eller, M.; Guill, K.; Harjes, C.; Kroon, D.; Lepak, N.; Mitchell, S. E.; Peterson, B.; Pressoir, G.; Romero, S.; Rosas, M. O.; Salvo, S.; Yates, H.; Hanson, M.; Jones, E.; Smith, S.; Glaubitz, J. C.; Goodman, M.; Ware, D.; Holland, J. B.; Buckler, E. S. Genetic properties of the maize nested association mapping population Science 2009, 325, 737– 740 LINK
- Buckler, E. S.; Holland, J. B.; Bradbury, P. J.; Acharya, C. B.; Brown, P. J.; Browne, C.; Ersoz, E.; Flint-Garcia, S.; Garcia, A.; Glaubitz, J. C.; Goodman, M. M.; Harjes, C.; Guill, K.; Kroon, D. E.; Larsson, S.; Lepak, N. K.; Li, H.; Mitchell, S. E.; Pressoir, G.; Peiffer, J. A.; Rosas, M. O.; Rocheford, T. R.; Romay, M. C.; Romero, S.; Salvo, S.; Villeda, H. S.; Sofia da Silva, H.; Sun, Q.; Tian, F.; Upadyayula, N.; Ware, D.; Yates, H.; Yu, J.; Zhang, Z.; Kresovich, S.; McMullen, M. D. The genetic architecture of maize flowering time Science 2009, 325, 714– 718 LINK
- Kump, K. L.; Bradbury, P. J.; Wisser, R. J.; Buckler, E. S.; Belcher, A. R.; Oropeza-Rosas, M. A.; Zwonitzer, J. C.; Kresovich, S.; McMullen, M. D.; Ware, D.; Balint-Kurti, P. J.; Holland, J. B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population Nat. Genet. 2011, 43, 163– 168 LINK
- Poland, J. A.; Bradbury, P. J.; Buckler, E. S.; Nelson, R. J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize Proc. Natl. Acad. Sci. 2011, 108, 6893– 6898 LINK
- Tian, F.; Bradbury, P. J.; Brown, P. J.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T. R.; McMullen, M. D.; Holland, J. B.; Buckler, E. S. Genome-wide association study of leaf architecture in the maize nested association mapping population Nat. Genet. 2011, 43, 159– 162 LINK
- Brown, P. J.; Upadyayula, N.; Mahone, G. S.; Tian, F.; Bradbury, P. J.; Myles, S.; Holland, J. B.; Flint-Garcia, S.; McMullen, M. D.; Buckler, E. S.; Rocheford, T. R. Distinct genetic architectures for male and female inflorescence traits of maize PLoS Genet. 2011, 7, e1002383 LINK
- Zheng, P.; Allen, W. B.; Roesler, K.; Williams, M. E.; Zhang, S.; Li, J.; Glassman, K.; Ranch, J.; Nubel, D.; Solawetz, W.; Bhattramakki, D.; Llaca, V.; Deschamps, S.; Zhong, G.-Y.; Tarczynski, M. C.; Shen, B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize Nat. Genet. 2008, 40, 367– 372 LINK
- Whitt, S. R.; Wilson, L. M.; Tenaillon, M. I.; Gaut, B. S.; Buckler, E. S. Genetic diversity and selection in the maize starch pathway Proc. Natl. Acad. Sci. U.S.A. 2002, 20, 12959– 12962 LINK
- Flint-Garcia, S. A.; Bodnar, A. L.; Scott, M. P. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte Theor. Appl. Genet. 2009, 119, 1129– 1142 LINK
- Kruijt, M.; Brandwagt, B. F.; de Wit, P. J. G. M. Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr9 responsiveness Genetics 2004, 168, 1655– 1663 LINK
- Verlaan, M. G.; Hutton, S. F.; Ibrahem, R. M.; Kormelink, R.; Visser, R. G. F.; Scott, J. W.; Edwards, J. D.; Bai, Y. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA-Dependent RNA polymerases PLoS Genet. 2013, 9, e1003399 LINK
- Vidavski, F. S. Exploitation of resistance genes found in wild tomato species to produce resistant cultivars; pile up of resistant genes. In Tomato leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance; Czosnek, H., Ed.; Kluwer: Dordrecht, The Netherlands, 2007; pp 363– 372. LINK
- Meihls, L. N.; Higdon, M. L.; Siegfried, B. D.; Miller, N. J.; Sappington, T. W.; Ellersieck, M. R.; Spencer, T. A.; Hibbard, B. E. Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 19177– 19182 LINK
- Meihls, L. N.; Higdon, M. L.; Ellersieck, M.; Hibbard, B. E. Selection for resistance to mCry3A-expressing transgenic corn in western corn rootworm J. Econ. Entomol. 2011, 104, 1045– 1054 LINK
- Lefko, S. A.; Nowatzki, T. M.; Thompson, S. D.; Binning, R. R.; Pascual, M. A.; Peters, M. L.; Simbro, E. J.; Stanley, B. H. Characterizing laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae) selected for survival on maize containing event DAS-59122-7 J. Appl. Entomol. 2008, 132, 189– 204 LINK