site-logo

Food Safety: Importance of Composition for Assessing Genetically Modified Cassava (Manihot esculenta Crantz)

Jansen van Rijssen FW, Morris EJ, Eloff JN
Journal of Agricultural and Food Chemistry
January 1, 2013

Task Force #12

Journal of Agricultural and Food Chemistry. 2013;61(35):8333-8339

Abstract: The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava (Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven “history of safe use”. This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a “worst case” of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the “best available knowledge”. We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.

To download this article, click here.

References

  1. Food and Agriculture Organization of the United Nations. FAOSTAT, Food and Agriculture Organization Statistics; (accessed Oct 2012). LINK
  2. Food and Agriculture Organization of the United Nations. Cassava Research and Development; (accessed Jan 21, 2013). LINK
  3. Food and Agriculture Organization of the United Nations. Global Cassava Development Strategy: International Institutions (accessed Jan 21, 2013). LINK
  4. Siritunga, D.; Sayre, R. Engineering cyanogen synthesis and turnover in cassava (Maniho tesculenta) Plant Mol. Biol. 2004, 56, 661– 669 LINK
  5. Kuiper, H. A.; Kleter, G. A.; Noteborn, H. P.; Kok, E. J. Assessment of the food safety issues related to genetically modified foods Plant J. 2001, 27, 503– 528 LINK
  6. Codex Alimentarius Commission. Foods derived from modern biotechnology: guideline for the conduct of food safety assessment of foods derived from recombinant DNA plant. In Joint FAO/WHO Food Standards Program, 2nd ed.; FAO/WHO: Rome, Italy, 2009; (accessed May 2012). LINK
  7. Food and Agriculture Organization of the United Nations. Biotechnology and Food Safety: Report of a Joint FAO/WHO Consultation; Food and Nutrition Paper 61; FAO: Rome, Italy, 1996; (accessed May 2011). LINK
  8. Organization for Economic Cooperation and Development. Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles; OECD: Paris, France, 1993. LINK
  9. Organization for Economic Cooperation and Development. Food safety evaluation. In Workshop on Food Safety Evaluation, Sept 12–15, 1994, Oxford, UK; OECD: Paris, France, 1996.
  10. World Health Organization. Strategies for assessing the safety of foods produced by biotechnology. In Report of a Joint FAO/WHO Expert Consultation, Geneva, Switzerland, Nov 5–10, 1990; WHO: Geneva, Switzerland, 1991. LINK
  11. World Health Organization. Application of the principles of substantial equivalence of the safety evaluation of foods or food components derived by modern biotechnology. In Report of a WHO Workshop, Food Safety Unit; WHO: Geneva, Switzerland, 1993. LINK
  12. World Health Organization. Safety aspects of genetically modified foods of plant origin. In Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, May 29–June 2, 2000; WHO: Geneva, Switzerland, 2000. LINK
  13. Codex Alimentarius Commission. Ad Hoc Inter-Governmental Task Force on Foods Derived from Modern Biotechnology in 1999–2003 and 2004–2009. International Food Standards; / (accessed Oct 2012). LINK
  14. Organization for Economic Cooperation and Development. Consensus Document on Compositional Consideration for New Varieties of Cassava (Manihot esculenta Crantz): Key Food and Feed Nutrients, Anti-Nutrients, Toxicants and Allergens; OECD: Paris, France, 2009. LINK
  15. Popper, K. R. Objective Knowledge: An Evolutionary Approach; Oxford University Press: New York, 1972.
  16. Raybould, A. The bucket and the searchlight: formulating and testing risk hypothesis about the weediness and invasiveness potential of transgenic crops Environ. Biosaf. Res. 2010, 9, 123– 133 LINK
  17. Uusiku, N. P.; Oelofse, A.; Duodu, K. G.; Bester, M. J.; Faber, M. Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: a review J. Food Compos. Anal. 2010, 23, 499– 509 LINK
  18. Chávez, A. L.; Sánchez, T.; Jaramillo, G.; Bedoya, J. M.; Echeverry, J.; Bolaños, E. A.; Ceballos, H.; Iglesias, C. A. Variation of quality traits in cassava roots evaluated in landraces and improved clones Euphytica 2005, 143, 125– 133 LINK
  19. Ravindran, G.; Ravindran, V. Changes in the nutritional composition of cassava (Manihot esculenta Crantz) leaves during maturity Food Chem. 1988, 27, 299– 309 LINK
  20. Nambisan, B. Evaluation of the effect of various processing techniques on cyanogen content reduction in cassava Acta Hortic. 1994, 375, 193– 202 LINK
  21. Saka, J. D. K.; Nyirenda, K. K. Effect of two ethnic processing technologies on reducing of and composition of total and non-glycosidic cyanogens in cassava Food Chem. 2012, 130, 605– 609 LINK
  22. Failla, M. L.; Chitchumroonchokchai, C.; Siritunga, D.; De Moura, F. F.; Fregene, M.; Manary, M. J.; Sayre, R. T. Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root J. Agric. Food Chem. 2012, 60, 3861– 3866 LINK
  23. Reynold, T. L.; Nemeth, M. A.; Glenn, K. C.; Ridley, W. P.; Astwood, J. D. Natural variability of metabolites in maize grain; differences due to genetic background J. Agric. Food Chem. 2005, 53, 10061– 10067 LINK
  24. Harrigan, G. G.; Stork, L. G.; Riordan, S. G.; Ridley, W. P.; MacIsaac, S.; Halls, S. C.; Orth, R.; Rau, D.; Smith, R. G.; Wen, L.; Brown, W. E.; Riley, R.; Sun, D.; Modiano, S.; Pester, T.; Lund, A.; Nelson, D. Metabolite analysis of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season J. Agric. Food Chem. 2007, 55, 6169– 6176 LINK 
  25. Harrigan, G. G.; Stork, L. G.; Riordan, S. G.; Reynolds, T. L.; Ridley, W. P.; Masucci, J. D.; MacIsaac, S.; Halls, S. C.; Orth, R.; Smith, R. G.; Wen, L.; Brown, W. E.; Welsch, M.; Riley, R.; MacFarland, D.; Pandravada, A.; Glenn, K. C. Impact of genetics and environment on nutritional metabolite components of maize grain J. Agric. Food Chem. 2007, 55, 6177– 6185 LINK 
  26. Ridley, W. P.; Shillito, R. D.; Coats, I.; Steiner, H. Y.; Shawgo, M.; Phillips, A.; Dussold, P.; Kurtyka, L. Development of the International Life Sciences Institute Crop Composition Database J. Food Compos. Anal. 2004, 17, 423– 438 LINK
  27. Ogola, J. B. O.; Mathews, C. Adaptation of cassava (Manihot esculenta) to the dry environments of Limpopo, South Africa: growth, yield and yield components. Afr. J. Agric. Res. 2011, 6, 6082– 6088.
  28. Burns, A.; Gleadow, R.; Cliff, J.; Zacarias, A.; Cavagnaro, T. Cassava: the drought, war and famine crop in a changing world Sustainability 2010, 2, 3572– 3607 LINK
  29. Burns, A. E.; Gleadow, R. M.; Zacarias, A. M.; Cuambe, C. E.; Miller, R. E.; Cavagnaro, T. R. Variations in the chemical composition of cassava (Manihot esculenta, Crantz) leaves and roots as affected by genotypic and environmental variation J. Agric. Food Chem. 2012, 60, 4946– 4956 LINK
  30. Constable, A.; Jonas, D.; Cockburn, A.; Davis, A.; Edwards, G.; Hepburn, P.; Herouet-Guicheney, C.; Knowles, M.; Moseley, B.; Oberdörfer, R.; Samuels, F. History of safe use as applied to the safety assessment of novel foods and foods derived from genetically modified organisms Food Chem. Toxicol. 2007, 45, 2513– 2525 LINK
  31. Wolt, J. D. Understanding risk and safety assessment for genetically modified plants, 2008; (accessed Oct 2012). LINK
  32. Querci, M.; Kleter, G. A.; Malingreau, J. P.; Broll, H.; Van den Eede, G. Scientific and Technical Contribution to the Development of an Overall Health Strategy in the Area of GMOs; JRC Reference Reports EUR23542 E; Joint Research Centre of the European Commission: Ispra, Italy, 2008. LINK
  33. Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, Board of Life Sciences, Food Nutrition Board, and Board on Agriculture and Natural Resources, Institute of Medicine and the National Research Council of the National Academies. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects; National Academies Press, Washington, DC, 2004; (accessed Sept 27, 2012). LINK
  34. Duffus, C. M.; Duffus, J. H. Introduction and overview. In Toxic Substances in Crop Plants; D’Mello, J. P. F.; Duffus, C. M.; Duffus, J. H., Eds.; Royal Society of Chemistry: Cambridge, UK, 1991; pp 1– 20. LINK
  35. Zagrobelny, M.; Bak, S.; Rasmussen, A. V.; Jørgensen, B.; Naumann, C. M.; Lindberg Møller, B. L. Cyanogenic glycosides and plant-insect interactions Phytochemistry 2004, 65, 293– 306 LINK
  36. Busk, P. K.; Møller, B. L. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants Plant Physiol. 2002, 129, 1222– 1231 LINK | PDF
  37. Gleadow, R. M.; Windrow, I. F. Constraints on effectiveness of cyanoglycoside concentrations in herbivore defense J. Chem. Ecol. 2002, 28, 1301– 1313 LINK
  38. Ganjewala, D.; Kumar, S.; Asha, D. S.; Ambika, K. Advances in cyanogenic glycosides biosynthesis and analysis of plants: a review Acta Biol. Szeged 2010, 54, 1– 14 LINK
  39. Srere, P. A. The metabolon Trends Biochem. Sci. 1985, 10, 109– 110 LINK
  40. World Health Organization. Cyanogenic glycosides (addendum).In Safety Evaluation of Certain Food Additives and Contaminants; JECFA/WHO Additives Series 65; WHO: Geneva, Switzerland, 2012; pp 171– 322. LINK
  41. Cardoso, A. P.; Mirione, E.; Ernesto, M.; Massaza, F.; Cliff, J.; Haque, M. R.; Bradbury, J. H. Processing of cassava roots to remove cyanogens J. Food Compos. Anal. 2005, 18, 451– 460 LINK
  42. Nyirenda, D. B.; Chiwona-Karltun, L.; Chitundu, M.; Haggblade, S.; Brimer, L.Chemical safety of cassava products in regions adopting cassava production and processing experience from southern Africa Food Chem. Toxicol. 2011, 49, 607– 612 LINK
  43. Oluwole, O. S. A.; Onbolu, A. O.; Mtunda, K.; Mlingi, N.Characterization of cassava (Manihot esculenta Crantz) varieties in Nigeria and Tanzania, and farmers’ perception of toxicity of cassava J. Food Compos. Anal. 2007, 20, 559– 567 LINK
  44. Food and Agriculture Organization of the United Nations/World Health Organization. Report of the seventh session of the Codex Committee on Contaminants in Foods, 8–12 April 2013. In Joint FAO/WHO Food Standard Program, REP 13/CF; Codex/FAO/WHO: Rome, Italy, 2013; pp 1– 70.
  45. Bellotti, A. C.; Riis, L. Cassava cyanogenic potential and resistance to pests and diseases Acta Hortic. 1994, 375, 141– 152 LINK
  46. Koch, B.; Sibbesen, O.; Swain, E.; Kahn, R.; Liangeheng, D.; Bak, S.; Halkier, B.; Møller, B.Possible use of a biotechnological approach to optimize and regulate the content and distribution of cyanogenic glycosides in cassava to increase food safety Acta Hortic. 1994, 375, 45– 60 LINK
  47. European Food Safety Authority. Opinion of the scientific panel on contaminants in the food chain on a request from the Commission related to cyanogen compounds as undesirable substances in animal feed EFSA J. 2007, 434, 1– 67 LINK
  48. Food and Agriculture Organization of the United Nations/World Health Organization. Codex standard for edible cassava flour. In Joint FAO/WHO Food Standard Program; Codex/FAO/WHO: Rome, Italy, 1989; Codex Standard 176-1989. LINK
  49. Food and Agriculture Organization of the United Nations/World Health Organization. Codex standard for gari. In Joint FAO/WHO Food Standard Program; Codex/FAO/WHO: Rome, Italy, 1989; Codex Standard 151-1989. LINK
  50. Food and Agriculture Organization of the United Nations/World Health Organization. Codex standard for sweet cassava. In Joint FAO/WHO Food Standard Program; Codex/FAO/WHO: Rome, Italy, 2011; Codex Standard 238-2003. LINK
  51. Food and Agriculture Organization of the United Nations/World Health Organization. Codex standard for bitter cassava. In Joint FAO/WHO Food Standard Program; Codex/FAO/WHO: Rome, Italy, 2011; Codex Standard 300-2010. LINK
  52. Cellini, F.; Chesson, A.; Colquhoun, I.; Constable, A.; Davies, H. V.; Engel, K. H.; Gatehouse, A. M.; Kärenlampi, S.; Kok, E. J.; Leguay, J. J.; Lehesranta, S.; Noteborn, H. P.; Pedersen, J.; Smith, M. Unintended effects and their detection in genetically modified crops Food Chem. Toxicol. 2004, 42, 1089– 1125 LINK
  53. Kitamura, K. Genetic improvement of nutritional and food processing quality in soybean J. Agric. Res. Q. 1995, 29, 1– 8 LINK
  54. Diawara, M. M.; Trumble, J. T.; Quiros, C. F. Linear furanocoumarins of three celery breeding lines: implications for integrated pest management J. Agric. Food Chem. 1993, 41, 819– 824 LINK 
  55. Diawara, M. M.; Trumble, J. T.; Quiros, C. F.; Hansen, R. Implications of distribution of linear furanocoumarin within celery J. Agric. Food Chem. 1995, 43, 723– 727 LINK 
  56. Republic of South Africa, Department of Health. Foodstuffs, Cosmetics and Disinfectants Act No. 15 of 1972, Updated by Act No.39, 2007; (accessed April 2012). LINK
  57. Republic of South Africa, Department of Agriculture, Forestry, and Fisheries. Agricultural Product Standards Act No. 119 of 1990; (accessed Oct 2012). LINK
  58. Morandini, P.; Salamini, F. Plant biotechnology and breeding: allied for years to come Trends Plant Sci. 2003, 8, 70– 75 LINK
  59. Chassy, B. Can ‘omics’ inform a food safety assessment? Regul. Toxicol. Pharmacol 2010, 58, S62– 70 LINK
  60. Davies, H.A role for “omics” technologies in food safety assessment Food Control 2010, 21, 1601– 1610 LINK
  61. Ricroch, A. E.; Bergé, J. B.; Kuntz, M.Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques Plant Physiol. 2011, 155, 1752– 1761 LINK
  62. Harrigan, G. G.; Chassy, B. Challenges for metabolomics as a tool in safety assessments. In Metabolomics; Roessner, U., Ed.; Regulatory Product Characterization and Safety Center, Monsanto Co.: St. Louis, MO, 2012.