site-logo

Compositional Analysis of Genetically Modified (GM) Crops: Key Issues and Future Needs

Hoekenga OA, Srinivasan J, Barry G, Bartholomaeus A
Journal of Agricultural and Food Chemistry
January 1, 2013

Task Force #12

Journal of Agricultural and Food Chemistry. 2013;61(35):8248–8253

Abstract: Effective symposia need two strong legs to stand upon: informative presentations of recent research paired with lively discussion of these topics. Although it is easy for the organizers of a symposium to predict the usefulness of the former, as they select the speakers and their topic areas, guaranteeing productive discussion is a far more difficult task. For the Crop Composition Workshop sponsored by the International Life Sciences Institute’s Committee on Food and Biotechnology (ILSI IFBIC), the organizers scheduled four roundtable discussions with preselected questions and with rapporteurs drawn from governmental organizations and public-sector research institutes (the authors). It was also the organizers’ intent to let these discussions flow on the basis of the experiences of the participants and pressing issues within the overall debate on the role of crop compositional analysis within safety assessment of biotechnology as it exists now and in the future. The goal of this perspective is to summarize the issues raised, providing references when possible, and to describe the consensus statements reached through the course of these discussions.

To download this article, click here.

References

  1. Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health, N.R.C. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects; National Academies Press: Washington, DC, 2004. LINK
  2. Vrebalov, J.; Ruezinsky, D.; Padmanabhan, V.; White, R.; Medrano, D.; Drake, R.; Schuch, W.; Giovannoni, J. A MADS-Box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus Science 2002, 296 ( 5566) 343– 346 LINK
  3. McHale, L. K.; Haun, W. J.; Xu, W. W.; Bhaskar, P. B.; Anderson, J. E.; Hyten, D. L.; Gerhardt, D. J.; Jeddeloh, J. A.; Stupar, R. M. Structural variants in the soybean genome localize to clusters of biotic stress-response genes Plant Physiol. 2012, 159 ( 4) 1295– 1308 LINK
  4. Chia, J. M.; Song, C.; Bradbury, P. J.; Costich, D.; de Leon, N.; Doebley, J.; Elshire, R. J.; Gaut, B.; Geller, L.; Glaubitz, J. C.; Gore, M.; Guill, K. E.; Holland, J.; Hufford, M. B.; Lai, J.; Li, M.; Liu, X.; Lu, Y.; McCombie, R.; Nelson, R.; Poland, J.; Prasanna, B. M.; Pyhajarvi, T.; Rong, T.; Sekhon, R. S.; Sun, Q.; Tenaillon, M. I.; Tian, F.; Wang, J.; Xu, X.; Zhang, Z.; Kaeppler, S. M.; Ross-Ibarra, J.; McMullen, M. D.; Buckler, E. S.; Zhang, G.; Xu, Y.; Ware, D. Maize HapMap2 identifies extant variation from a genome in flux Nat. Genet. 2012, 44 ( 7) 803– 807 LINK
  5. Bolon, Y. T.; Haun, W. J.; Xu, W. W.; Grant, D.; Stacey, M. G.; Nelson, R. T.; Gerhardt, D. J.; Jeddeloh, J. A.; Stacey, G.; Muehlbauer, G. J.; Orf, J. H.; Naeve, S. L.; Stupar, R. M.; Vance, C. P. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean Plant Physiol. 2011, 156 ( 1) 240– 253 LINK
  6. Chemicals Committee and Working Party on Chemicals, Pesticides, and Biotechnology, Consensus Document on Compositional Considerations for new varieties of maize (Zea mays). In Key Food and Feed Nutrients, Anti-nutrients and Secondary Plant Metabolites; Organization for Economic Cooperation and Development: Paris, France, 2002; Vol. 6.
  7. Perez-Pinera, P.; Ousterout, D. G.; Gersbach, C. A. Advances in targeted genome editing Curr. Opin. Chem. Biol. 2012, 16 ( 3–4) 268– 277 LINK
  8. Shukla, V. K.; Doyon, Y.; Miller, J. C.; DeKelver, R. C.; Moehle, E. A.; Worden, S. E.; Mitchell, J. C.; Arnold, N. L.; Gopalan, S.; Meng, X.; Choi, V. M.; Rock, J. M.; Wu, Y. Y.; Katibah, G. E.; Zhifang, G.; McCaskill, D.; Simpson, M. A.; Blakeslee, B.; Greenwalt, S. A.; Butler, H. J.; Hinkley, S. J.; Zhang, L.; Rebar, E. J.; Gregory, P. D.; Urnov, F. D. Precise genome modification in the crop species Zea mays using zinc-finger nucleases Nature 2009, 459 ( 7245) 437– 441 LINK
  9. Gregoire, M. C. APHIS confirmation of the regulatory status of Kentucky bluegrass genetically engineered without genetic material from plant pests; http://www.aphis.usda.gov/biotechnology/downloads/reg_loi/scotts_0512_kbg.pdf (accessed Jan 15, 2013).
  10. Simmonds, N. W. The relation between yield and protein in cereal grain J. Sci. Food Agric. 1995, 67 ( 3) 309– 315 LINK
  11. USDA ERS. Adoption of genetically engineered crops in the U.S.; http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us (accessed May 20, 2013).
  12. USDA ARS. National Nutrient Database For Standard Reference; http://ndb.nal.usda.gov/ (accessed Jan 12, 2013).
  13. Alba, R.; Phillips, A.; Mackie, S.; Gillikin, N.; Maxwell, C.; Brune, P.; Ridley, W.; Fitzpatrick, J.; Levine, M.; Harris, S.Improvements to the International Life Sciences Institute crop composition database J. Food Compos. Anal. 2010, 23, 741– 748 LINK
  14. Kalaitzandonakes, N.; Alston, J. M.; Bradford, K. J.Compliance costs for regulatory approval of new biotech crops Nat. Biotechnol. 2007, 25 ( 5) 509– 511 LINK
  15. Raybould, A.; Tuttle, A.; Shore, S.; Stone, T.Environmental risk assessments for transgenic crops producing output trait enzymes Transgenic Res. 2010, 19 ( 4) 595– 609 LINK
  16. Food and Nutrition Research Institute, government of The Philippines. 7th National Nutrition Survey; http://www.fnri.dost.gov.ph/index.php?option=content&task=view&id=1770 (accessed Jan 23, 2013).