site-logo

Bringing a Transgenic Crop to Market: Where Compositional Analysis Fits

Privalle LS, Gillikin N, Wandelt C
Journal of Agricultural and Food Chemistry
January 1, 2013

Task Force #12

Journal of Agricultural and Food Chemistry. 2013;61(35):8260-8266

Abstract: In the process of developing a biotechnology product, thousands of genes and transformation events are evaluated to select the event that will be commercialized. The ideal event is identified on the basis of multiple characteristics including trait efficacy, the molecular characteristics of the insert, and agronomic performance. Once selected, the commercial event is subjected to a rigorous safety evaluation taking a multipronged approach including examination of the safety of the gene and gene product – the protein, plant performance, impact of cultivating the crop on the environment, agronomic performance, and equivalence of the crop/food to conventional crops/food – by compositional analysis. The compositional analysis is composed of a comparison of the nutrient and antinutrient composition of the crop containing the event, its parental line (variety), and other conventional lines (varieties). Different geographies have different requirements for the compositional analysis studies. Parameters that vary include the number of years (seasons) and locations (environments) to be evaluated, the appropriate comparator(s), analytes to be evaluated, and statistical analysis. Specific examples of compositional analysis results will be presented.

To download this article, click here.

References

  1. James, C. Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief No. 44. The International Service for the Acquisition of Agribiotech Applications (ISAAA), Ithaca, NY, 2012; LINK
  2. McDougall, P. The cost and time involved in the discovery, development and authorization of a new plant biotechnology derived trait. Crop Life International, 2011; LINK
  3. Graff, G. D.; Hochman, G.; Zilberman, D. The political l economy of agricultural biotechnology policies AgBioForum 2009, 12, 34– 46
  4. Ladics, G. S.; Cressman, R. F.; Herouet-Guicheney, C.; Herman, R. A.; Privalle, L.; Song, P.; Ward, J. M.; McClain, S. Bioinformatics and the allergy assessment of agricultural biotechnology products: industry practices and recommendations Regul. Toxicol. Pharm. 2011, 60, 46– 53 LINK
  5. Delaney, B.; Astwood, J. D.; Cunny, H.; EichenConn, R.; Herouet-Guicheney, C.; MacIntosh, S.; Meyer, L. S.; Privalle, L.; Goa, Y.; Mattsson, J.; Levine, M. Evaluation of protein safety in the context of agricultural biotechnology Food Chem. Toxicol. 2008, 46, S71– S97 LINK
  6. Hammond, B. Food Safety of Proteins in Agricultural Biotechnology; CRC Press: Boca Raton, FL, 2008 LINK
  7. McHughen, A.; Smyth, S.US regulatory system for genetically modified genetically modified organism (GMO), rDNA or transgenic crop cultivars Plant Biotechnol. J. 2008, 6, 2– 12 LINK
  8. Privalle, L. S.; Chen, J.; Claper, G.; Hunst, P.; Spiegelhalter, F.; Zhong, C. X. Development of an agricultural biotechnology crop product: testing from Discovery to commercialization J. Agric. Food Chem. 2012, 60, 10179– 10187 LINK
  9. CAC/GL 44-2003 Codex Alimentarius – Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants. LINK
  10. Bohner, H. What about yield drag on Roundup Ready Soybean? 2003; LINK
  11. Lai, F. M.; Privalle, L.; Mei, F.; Ghoshal, D.; Shen, Y.; Klucinec, J.; Daeschner, K.; Mankin, L. S.; Chen, N.; Cho, S.; Jones, T. Evaluation of the E. coli dserine ammonia lyase gene (Ec. dsdA) for use as a selectable marker in maize transformation In Vtro Cell Dev. Biol. – Plant 2011, 47, 467– 479 LINK
  12. European Food Safety Authority. LINK.
  13. European Commission. LINK.
  14. European Food Safety Authority. LINK.
  15. De Vetten, N.; Wolters, A. M.; Raemakers, K.; van der Meer, I.; ter Stege, R.; Heeres, E.; Heeres, P.; Visser, R. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop Nat. Biotechnol. 2003, 21, 439– 442 LINK
  16. AOAC International. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Horwitz, W., Ed.; Gaithersburg, MD, 2000. LINK
  17. U.S. Department of Agriculture. Composition of Foods; Agriculture Handbook 74; Washington, DC, 1973. LINK
  18. Hellenas, K. E.; Branzell, C. Liquid chromatographic determination of the glycoalkaloids α-solanine and α-chaconine in potato tubers: NMKL Interlaboratory Study, Nordic Committee on Food Analysis J. AOAC Int. 1997, 80, 549– 554 LINK
  19. Reed, J.; Privalle, L.; Powell, M. L.; Meghji, M.; Dawson, J.; Dunder, E.; Suttie, J.; Wenck, A.; Launis, K.; Kramer, C.; Chang, Y. F.; Hansen, G.; Wright, M. Phosphomannose isomerase: an efficient selectable marker for plant transformation In Vitro Cell. Dev. Biol. – Plant 2001, 37, 127– 132 LINK
  20. Kuipers, A. G.; Jacobsen, E.; Visser, R. G. F. Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression Plant Cell 1994, 6, 43– 52 LINK
  21. Börnke, F.; Sonnewald, S. Biosynthseis and metabolism of starch and sugars. In Plant Metabolism and Biotechnology; Ashihara, J.; Crozier, A.; Komamine, A., Eds.; Wiley: New York, 2011. LINK
  22. Organization for Economic Cooperation and Development. Consensus Documents for the work on the Safety of Novel Foods and Feeds: Plants LINK
  23. Harringan, G. G.; Chassy, B. Challenges for metabolomics as a tool in safety assessments. In Metabolomics; Roessner, U., Ed.; Intech Publications: Rijeka, Croatia, 2012; pp 331– 348. LINK | FREE
  24. Ridley, W. P.; Shillito, R. D.; Coats, I.; Steiner, H.-Y.; Shwago, M.; Phillips, A.; Dussold, P.; Kurtyka, L. Development of the International Life Sciences Institute Crop Composition Database J. Food Compos. Anal. 2004, 17, 423– 438 LINK
  25. Jugenheimer, R. W. Corn: improvements. Seed Production and Uses; Wiley: New York, 1976.
  26. Herman, R. A.; Chassy, B. M.; Parrott, W. Compositional assessment of transgenic crops: an idea whose time has passed Trends Biotechnol. 2009, 27, 555– 557 LINK
  27. Ridley, W. P.; Harrigan, G. G.; Breeze, M. L.; Nemeth, M. A.; Sidhu, R. S.; Glenn, K. C. Evaluation of compositional equivalence for multitrait biotechnology crops J. Agric. Food Chem. 2011, 59, 5865– 5876 LINK
  28. Ricroch, A. E. Assessment of GE food safety using “-omics’ techniques and long-term animal feeding studies. New Biotechnol. 2013, DOI: 10.1016/j.nbt.2012.12.001. LINK-