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INTRODUCTION

This document provides a comprehensive review of 
the information and data relevant to the environ-
mental risk assessment of Cry3Bb1, a protein en-
coded by a gene isolated from Bacillus thuringiensis 
(Bt), and it presents a summary statement about the 
environmental safety of this protein when produced 
in genetically engineered (GE) maize (Zea mays) 
plants. All sources of information reviewed herein 
are publicly available and include dossiers presented 
to regulatory authorities, decision documents pre-
pared by regulatory authorities, product descriptions 
prepared by product developers, and peer-reviewed 
literature.

Environmental risk assessments (ERAs) related to 
the planting of GE crops are conducted on a case-
by-case basis and consider both potential hazards 
and exposure levels. ERAs may consider the biology 
of the plant, the characteristics of the transgenes and 
any encoded proteins, the phenotype conferred by 
the transgenes, the intended uses of the crop, and 
the nature of the receiving environment into which 
the plant will be introduced. Assessments typically 
involve comparisons to an untransformed parental 
line or a closely related isoline. The goal of these 
comparisons is the identification of potential risks 
the GE plant might present beyond those already 
deemed acceptable when similar, non-GE plants 
are grown in the environment. The consequences of 
these risks, if any, are then evaluated (OECD, 2007; 
Craig et al., 2008).

Several regulatory authorities have performed envi-
ronmental risk assessments on GE maize varieties 
producing Cry3Bb1 (CERA, 2014). Table I shows 

the current status1 of regulatory approvals for the 
environmental release of maize varieties contain-
ing Cry3Bb1 events MON863 or MON88017. In 
some countries, a separate regulatory approval may 
be given when an already approved event is com-
bined with other GE events in a stack (Que et al., 
2010; Storer et al., 2012). The table shows the date 
of the earliest approval given for the event.

Table 1.  Regulatory approvals for the environmental re-
lease of GE maize varieties containing Cry3Bb1 (CERA, 
2014)(as of January 30, 2014)

Country MON863 MON88017

Argentina 2010

Canada 2003 2006

Japan 2004 2006

United States 2003 2005

ORIGIN AND FUNCTION OF THE 
Cry3Bb1 PROTEIN

Bacillus thuringiensis and the Cry3Bb1 
Insecticidal Protein

Bacillus thuringiensis is a rod-shaped, gram-positive 
bacterium capable of forming long-lived endospores. 
It is often referred to as a soil bacterium, although it 
is ubiquitous in the environment (See, for example,  
Apaydin et al., 2008; Martínez and Caballero, 2002; 
Seifinejad et al., 2008). The species has been studied 
extensively and used commercially for many years 
due to its ability to synthesize proteins that possess 
selective pesticidal properties (Hofte and Whiteley, 
1989; Cannon, 1996; Schnepf et al., 1998; OECD, 
2007; van Frankenhuyzen, 2009; Sanahuja et al., 
2011). Preparations of natural isolates of B. thuring-

1  Some countries’ regulations may require periodic renewal 
of GE crop registrations. For example, the current status of 
USEPA registrations can be found at http://www.epa.gov/
oppbppd1/biopesticides/pips/pip_list.htm.

http://www.epa.gov/oppbppd1/biopesticides/pips/pip_list.htm
http://www.epa.gov/oppbppd1/biopesticides/pips/pip_list.htm
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iensis were first used as a commercial insecticide in France in 1938 
(Sanahuja et al., 2011), and B. thuringiensis subspecies kurstaki has 
been registered with USEPA since 1961 (USEPA, 1998). Microbial 
preparations of B. thuringiensis are currently approved for use around 
the world including in Australia, Canada, the European Union, 
and the United States (Kumar et al., 1996; Schnepf et al., 1998; 
USEPA, 1998; Baum et al., 1999; Health Canada, 2008; Sanchis 
and Bourguet, 2008; APVMA, 2013; DGSANCO, 2013).

Several hundred pesticidal substances have been isolated from Bt cul-
tures (Cannon, 1996; Prieto-Samsónov et al., 1997; Crickmore et al., 
2012), and these substances display tremendous variety in chemical 
structure, mode of action, and target specificity (Hofte and Whiteley, 
1989; Boucias and Pendland, 1998; Schnepf et al., 1998; OECD, 
2007; Pigott and Ellar, 2007; van Frankenhuyzen, 2009; Vachon et 
al., 2012). Insecticidal preparations derived from cultured cells of 
Bt bacteria may contain a complex mixture of the pesticidal sub-
stances produced by the particular Bt strain used (Tabashnik, 1992; 
Schnepf et al., 2005; Sanahuja et al., 2011). They include antifungal 
compounds, ß-exotoxin,2 vegetative insecticidal proteins (Vip), the 
Cyt (cytolytic) proteins, and the δ-endotoxins, a group that includes 
the insecticidal Cry (crystalline) proteins (Hofte and Whiteley, 1989; 
Schnepf et al., 1998; OECD, 2007; Pardo-López et al., 2013). These 
substances may interact with each other to influence the toxicity and 
activity spectrum of individual bacterial preparations (Schnepf et 
al., 1998; OECD, 2007). Therefore, the activity spectrum of sprays 
made from Bt bacterial cultures may be much broader when com-
pared to the activity spectrum of individual Bt proteins produced by 
a GE plant  (OECD, 2007). The Cry proteins have been studied ex-
tensively and used widely in agriculture as environmentally safe pes-
ticides that control a broad range of economically significant insect 
pests (Gill et al., 1992; Cannon, 1996; Prieto-Samsónov et al., 1997; 
Evans, 2002; Mendelsohn et al., 2003; Gómez et al., 2007; OECD, 
2007; Pardo-López et al., 2013).

In 1991 a new strain of Bacillus thuringiensis subsp. kumamotoen-
sis, designated EG4691, was discovered that produced a crystalline 
protein related to CryIIIA. This protein had insecticidal activity 
against two significant agricultural insect pests: the Colorado potato 
beetle (Leptinotarsa decemlineata) and the southern corn rootworm 
(Diabrotica undecimpunctata howardi), both coleopterans. However 
it was not toxic to Musca domestica, a dipteran, nor to the lepidop-
teran species Heliothis virescens, Plutella xylostella, or Trichoplusia ni 
(Rupar et al., 1991). The protein was later found to be toxic to larvae 
of D. virgifera virgifera, the western corn rootworm (English et al., 
2000; Siegfried et al., 2005). Larval stages of Diabrotica sp. are gener-
ally more sensitive to the toxin than the adult stages (Al-Deeb and 
Wilde, 2005; Meissle et al., 2011). This strain of Bt was developed 
as a microbial pesticide spray and has been sold commercially3 since 

2  Also called thuringiensin (OECD, 2007; Liu et al., 2010).

3  Raven Biological Insecticide, Ecogen, Inc., Langhorne, PA.

1995 to control Colorado potato beetle and other coleopteran insect 
pests (USDA, 2001; Vaughn et al., 2005).

Subsequently, the gene that encoded this protein, named cryIIIB2, 
was isolated from a 95 MDa plasmid in strain EG4961 and se-
quenced. The gene consisted of 652 codons, and it encoded a 74 kDa 
protein, originally designated CryIIIB2 (Rupar et al., 1991; Donovan 
et al., 1992; USDA, 2001). After revisions to the nomenclature of Bt 
proteins, CryIIIB, was renamed Cry3Bb1 and the associated gene 
cry3Bb1 (Crickmore et al., 1998). Cry3Bb1 shares approximately 
85% sequence homology with Cry3A (Galitsky et al., 2001).

Mechanism of Cry3Bb1 Insecticidal Activity

The mode of action for Cry3Bb1 is similar to that of other Cry 
toxins: once consumed by the target insect, the toxin dissolves and is 
activated by midgut proteases (Kaiser-Alexnat, 2009; Kaiser-Alexnat 
et al., 2009), resulting in a 70 kDa protein that binds to specific 
membrane receptors in the brush border membrane of susceptible 
insects (Donovan et al., 1992; Kaiser-Alexnat et al., 2009). After 
specific interactions with the receptor, which may be modulated by 
cadherin (Park et al., 2009; Sayed et al., 2010), the toxin is thought to 
insert itself into the membrane and cause the formation of pores, re-
sulting in ionic disequilibrium and cell lysis (Gill et al., 1992; Prieto-
Samsónov et al., 1997; Gómez et al., 2007; Gassmann et al., 2011, 
2012; Höss et al., 2013). An α-helical domain in the Cry3Bb1 is 
thought to be responsible for the formation of the ion channels in 
the midgut cell membranes (Galitsky et al., 2001). The mutation of 
specific Cry3Bb1 amino acids adjacent to or within loop regions that 
separate the helices results in a protein that binds more effectively to 
the midgut brush border membrane.4  This enhanced binding con-
tributes to increased toxicity to Diabrotica sp. (English et al., 2000), 
and to date, two transgenic maize lines, MON863 and MON88017, 
have been developed using an enhanced Cry3Bb1.

Modifications to the genes encoding Cry3Bb1 in GE maize

MON863: The cry3Bb1 sequence used to create maize event 
MON863 was modified from that of the wild-type cry3Bb1 gene. A 
restriction site, added to facilitate the cloning of the gene, resulted in 
the addition of an alanine residue at position two of the amino acid 
sequence of Cry3Bb1 (USDA, 2001; USEPA, 2003). In addition, 
six amino acids in the wild-type sequence were substituted with dif-
ferent amino acids to enhance the insecticidal activity of the protein 
(English et al., 2000; FSANZ, 2003; USEPA, 2003). The modified 
sequence, which consists of 653 amino acids, is 98.9% homologous 
to the wild type sequence (USDA, 2001). The specific amino acids 
changes are listed in Table 2. The protein is not glycosylated post-
translation (CFIA, 2003, 2006; FSANZ, 2003, 2006).

4  For example, substitutions at amino acid positions 311, 313, and 317 in a 
surface-exposed loop of the wild type Cry3Bb1 protein alter the hydrophobicity 
of the region and increase insecticidal activity (English et al., 2000).
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Table 2. Amino acid substitutions in wild-type Cry3Bb1 used in the pro-
duction of MON863 (USDA, 2001).

Wild-type Cry3Bb1 Position in Sequence MON863 Cry3Bb1

-- 2 Alanine

Aspartic acid 166 Glycine

Histidine 232 Arginine

Serine 312 Leucine

Asparagine 314 Threonine

Glutamic acid 318 Lysine

Glutamine 349 Arginine

MON88017: The amino acid sequences of MON863 and 
MON88017 are 99.8% homologous, differing by only one amino 
acid: the amino acid residue at position 166 in MON88017 is the 
same as in the wild-type sequence, aspartic acid, rather than gly-
cine, as in MON863 (USDA, 2004). The Cry3Bb1 produced by 
MON88017 is not glycosylated (USDA, 2004).

Descriptions of the genetic elements used in the production of 
Cry3Bb1 maize events MON863 and MON88017 are provided in 
Table 3. 

Expression of Cry3Bb1 in GE Insect-Resistant Maize

Transgene expression levels in a GE plant can be influenced by sev-
eral factors related to the genetic transformation process, including 
the types of promoter and terminator sequences employed, as well as 
the chromosomal location where the transgene has been incorporated 
into the genome. Expression levels may also be influenced by the type 
of tissue sampled, the age of the plant at the time the sample was 
taken, and the environmental conditions under which the plant was 
growing (See, e.g., Siebert et al., 2009).

Data from enzyme-linked immunosorbent assays, showing levels of 
Cry3Bb1 protein expression in GE maize events, have been made 
publicly accessible via regulatory dossiers and decision documents 
associated with regulatory authorization processes. Samples were col-
lected from several tissue types, and at multiple growth stages, from 
plants grown in several different locations to produce data representa-
tive of the typical range of Cry3Bb1 expression. Protein expression 
data may be used to estimate the potential exposure of various organ-
isms in the environment to Cry3Bb1 when maize plants producing 
Cry3Bb1 are cultivated. Currently available protein expression data 
for Cry3Bb1 by maize events MON863 and MON88017, used alone 
and when stacked with other GE events, are presented in Annex I.5

NON-TARGET ORGANISM TESTING AND IMPACTS 
OF EXPOSURE TO THE Cry3Bb1 PROTEIN

Range of Non-Target Organisms Potentially Impacted by 
Cry3Bb1

When expressed in maize plants, the Cry3Bb1 toxin has insecticidal 
properties against certain coleopteran rootworm species (Diabrotica 
sp.), which, in their larval form, would otherwise cause feeding 
damage to the crop (English et al., 2000; Rice, 2003, 2004; Hibbard 
et al., 2005; Siegfried et al., 2005; Vaughn et al., 2005; Clark et al., 
2006; Nowatski et al., 2006; Prasifka et al., 2013). Organisms in 
the environment that are not pests of maize but may be directly or 
indirectly exposed to Cry3Bb1 expressed in transgenic maize plants 
are called non-target organisms (NTOs). The assessment of impacts 
to NTOs involves the review of data submitted to regulators by the 
product developer to demonstrate that NTOs exposed to Cry3Bb1, 
either directly or indirectly, are not harmed significantly. 

The NTO risk assessment typically begins with a determination of 
the organisms that are likely to be directly or indirectly exposed to 
Cry3Bb1. Particular consideration is often given to NTOs having 
beneficial environmental functions, such as pollinators, decomposers, 
or the natural enemies of agricultural pests. Regulatory authorities 
may also give special attention to NTOs that have been designat-
ed as threatened or endangered species or have recognized cultural 
value, such as the Monarch butterfly. These species, or valid surro-

5  Throughout the remainder of this monograph, the proteins produced by events 
MON863 and MON88017 will be referred to collectively as “Cry3Bb1.”

Table 3.  Genetic elements used in the production of MON863 and 
MON88017 maize events (USDA, 2001, 2004; USFDA, 2001, 2005; 
FSANZ, 2003, 2006; JBCH, 2006a; b, 2008a; b, 2009a; b; EFSA, 2004, 
2009a; JBCH, 2004a; b; c; d; COGEM, 2005a; b; Siegfried et al., 2005; 
Vaughn et al., 2005)

MON863

Genetic Element Function

4-AS1 Root-enhanced promoter containing four tandem copies 
of AS1 and a single portion of the 35S promoter of 
Cauliflower Mosaic Virus CaMV

wtCAB 5’ untranslated leader of the wheat chlorophyll a/b-
binding protein

ract1 intron Intron from the rice actin gene

cry3Bb1 Coding sequence for a synthetic variant of Cry3Bb1 
protein from Bacillus thuringiensis subsp. kumamotoensis

tahsp 17 3’ 3’ nontranslated region of the coding sequence for wheat 
heat shock protein 17.3 which ends transcription and 
directs polyadenylation

MON88017

p-e35S Promoter with duplicated enhancer region from CaMV

wtCAB 5’ untranslated leader of the wheat chlorophyll a/b-
binding protein

ract1 intron Intron from the rice actin gene

cry3Bb1 Coding sequence for a synthetic variant of Cry3Bb1 
protein from Bacillus thuringiensis subsp. kumamotoensis

tahsp 17 3’ 3’ nontranslated region of the coding sequence for wheat 
heat shock protein 17.3 which ends transcription and 
directs polyadenylation
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gates for these species, are then tested to determine whether exposure 
to Cry3Bb1 could cause significant adverse impacts (Romeis et al., 
2008, 2013; Knecht et al., 2010; Carstens et al., 2012, 2014; CERA, 
2012).

Assessments of the potential impacts to NTOs, and the regulatory 
decisions informed by these assessments, have been grounded in the 
long and well-documented history of the evaluation of chemical in-
secticides, including microbial formulations of B. thuringiensis (Rose, 
2007; Romeis et al., 2008, 2013; Carstens et al., 2012, 2014; CERA, 
2012; Sanvido et al., 2012). The “tiered” approach for assessing the 
impacts of chemical pesticides on NTOs has been used effectively 
for many years, and tiered testing has also been determined by scien-
tists and regulators to be appropriate for the assessment of potential 
impacts of insect-resistant GE crops on NTOs (Dutton et al., 2003; 
EFSA, 2006; Garcia-Alonso et al., 2006; Raybould, 2006; Rose, 
2007; Romeis et al., 2008, 2013; Duan et al., 2010; USEPA, 2011c).

So-called “Tier 1” studies are performed under controlled laboratory 
conditions and involve the exposure of NTOs, or surrogate species, 
to concentrations of the pesticide several times higher than are likely 
in the natural environment. These studies identify those species that 
may be significantly affected by the pesticide. When found, such ef-
fects may require further analysis at a higher tier level. Tier 1 tests 
also identify NTOs that are unaffected by the pesticidal protein and 
for which higher tier testing is therefore unnecessary. Higher level 
tier testing may also be appropriate when the results of early tier tests 
are inconclusive. Testing at higher tiers typically involves increasing 
levels of complexity and increasingly realistic assay conditions (EFSA, 
2006; Garcia-Alonso et al., 2006; Rose, 2007; Romeis et al., 2008, 
2011; USEPA, 2011c)

Routes of Environmental Exposure

Fundamental to the assessment of impacts of Cry3Bb1 on NTOs is 
the determination of routes through which NTOs would be exposed 
to the toxin. Direct exposure typically occurs when NTOs feed on 
living crop tissues expressing Cry3Bb1, on seed, pollen, and other 
plant tissues that have fallen to the ground, or on post-harvest crop 
residues, either above or below ground. Indirect exposure results from 
the predation by one organism on another organism that has had 
direct exposure to Cry3Bb1 (Romeis et al., 2009; Tian et al., 2012). 
In addition, regulatory authorities may consider other routes of in-
direct exposure to the Cry3Bb1 toxin, e.g., exposure to toxin that is 
exuded into the soil from living maize roots or toxin released into 
the soil by decomposing plant material (USEPA, 2003, 2009; CFIA, 
2006; EFSA, 2009a; Carstens et al., 2012; CERA, 2012).

Regulators typically consider protein expression data to determine 
potential routes and levels of exposure. For example, plant tissues 
producing little or no Cry3Bb1 are unlikely to pose a hazard to 
NTOs (USDA, 2001, 2004; USFDA, 2001; CFIA, 2003, 2006; 
FSANZ, 2003; USEPA, 2003; EFSA, 2009a; b; Nguyen and Jehle, 

2009). (See Annex I for Cry3Bb1 expression level data in the tissues 
of approved maize varieties.) Published data as well as data submitted 
to regulatory authorities indicate that Cry3Bb1 is quickly degraded 
once released from living maize roots as well as from decomposing 
plant tissue and is not likely to persist or accumulate in the soil nor 
in aquatic environments (USDA, 2001; Evans, 2002; CFIA, 2003; 
USEPA, 2003; Ahmad et al., 2005; Fiorito et al., 2008; Icoz and 
Stotzky, 2008; Prihoda and Coats, 2008a; b; Miethling-Graff et al., 
2010; Höss et al., 2011).

Ecotoxicological Testing of Cry3Bb1 on Non-Target 
Organisms

As discussed above, ecotoxicological testing has been conducted for 
many years using a variety of well-characterized test organisms to de-
termine the effects of chemical pesticides on NTOs. Data from these 
tests have been shown to effectively assess the environmental risks of 
chemical pesticides and to inform regulators’ decisions regarding the 
safe development and use of pesticides. Analogous testing using many 
of the same organisms has been successfully used to assess impacts 
from the environmental release of transgenic crops expressing one or 
more Bt proteins (Dutton et al., 2003; Garcia-Alonso et al., 2006; 
Raybould, 2007; Rose, 2007; Romeis et al., 2008; Gealy et al., 2010; 
Yu et al., 2011; Carstens et al., 2012).

Regulators may require GE crop developers to provide data regarding 
adverse impacts on beneficial species, such as pollinators, predators, 
and decomposers; culturally important species, such as the Monarch 
butterfly; and representative soil dwelling species to demonstrate that 
there are no significant impacts to these species from exposure to 
Cry3Bb1. Test organisms have included Apis mellifera (honeybee); 
Coleomegilla maculata and Hippodamia convergens (ladybird beetle); 
Chrysoperla carnea (green lacewing); Danaus plexippus (Monarch but-
terfly); Nasonia vitripennis (parasitic wasp); Folsomia candida (spring-
tail); Daphnia magna (crustacean); and Eisenia foetida (earthworm). 
Test organisms were exposed to levels of Cry3Bb1 several times 
higher than the highest exposure levels predicted from the observed 
tissue concentrations of Cry3Bb1 in GE maize plants (See Annex 
II). After evaluating these test results, regulators have concluded that 
no significant adverse effects were observed (USDA, 2001, 2004; 
USEPA, 2003, 2009).

Impacts on non-target coleopterans: Because Cry3Bb1 is used as a 
selective pesticide for the coleopteran target pests Leptinotarsa decem-
lineata and Diabrotica sp., several researchers have performed Tier 1 
testing to determine whether Cry3Bb1 may have adverse impacts on 
non-target coleopterans. Lab studies have exposed non-target cole-
opteran insects6 to Cry3Bb1 in several ways: the insects were fed a 

6  Some of the coleopteran species that have been subjected to Tier 1 lab tests 
with Cry3Bb1 include Adalia bipunctata, Atheta coriaria, Coleomegilla macu-
lata, Epilachna vigintioctopunctata, Galerucella vittaticollis, Harpalus caligi-
nosus, H. pensylvanicus, Oulema melanopus, Poecilus chalcites, and Stethorus 
punctillum.
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prepared diet containing Cry3Bb1 protein; insects were fed pollen 
collected from maize plants expressing the cry3Bb1 gene; or her-
bivorous insects, such as aphids and mites, were allowed to feed on 
Cry3Bb1 maize plants and were then fed to coleopteran test sub-
jects. Not all herbivorous species that feed on Bt crops actually ingest 
the Bt toxins.7  The results of these laboratory studies indicate that 
there are no environmentally significant adverse effects from the con-
sumption of Cry3Bb1 by non-target coleopterans (Duan et al., 2002, 
2006; Lundgren and Wiedenmann, 2002, 2005; Mullin et al., 2005; 
Ahmad et al., 2006b; Shirai, 2006; Li and Romeis, 2010; Alvarez-
Alfageme et al., 2011; García et al., 2012; Meissle et al., 2012).

Impacts on non-coleopteran species: Researchers have also per-
formed many Tier 1 tests to determine if Cry3Bb1 has any adverse 
effects on non-coleopteran NTOs, including beneficial organisms 
that act as pollinators, predators, parasitoids, and decomposers, as 
well as culturally important species, such as the Monarch butterfly.8  
Test organisms were exposed to Cry3Bb1 in a variety of ways: they 
were fed Cry3Bb1 maize tissues, such as pollen, leaves, or roots; they 
were provided with synthetic diets containing Cry3Bb1 protein; 
or they were fed prey insects that had previously fed on Cry3Bb1 
maize plants. These assays did not detect any environmentally signifi-
cant adverse impacts from Cry3Bb1 exposure (Arpaia, 1996; Carter 
et al., 2004; Mattila et al., 2005; Li et al., 2008, 2010; Lipiński et 
al., 2008; Prihoda and Coats, 2008a; Duan et al., 2008a; b; Meissle 
and Romeis, 2009b; Zurbrügg and Nentwig, 2009; Hönemann and 
Nentwig, 2009, 2010; Knecht and Nentwig, 2010; Höss et al., 2010, 
2013; Hendriksma et al., 2011, 2012; Meissle, 2013).

Higher-tier assays of NTO impacts: The results from Tier 1 tests dis-
cussed above indicate that no higher tier testing should be necessary 
from a regulatory standpoint, because no adverse effects were noted.9  
However, numerous higher-tier studies of the effects of Cry3Bb1 
maize on populations of NTOs have been performed, including both 
greenhouse and field studies. Some of these studies have looked at 

7  Thrips and spider mites ingest Bt toxins, while aphids do not (Romeis and 
Meissle, 2011).

8  Some of the non-coleopteran species that have been subjected to Tier 1 lab 
tests with Cry3Bb1 include Apis mellifera, Arion lusitanicus, Arion vulgaris, 
Caecidotea communis, Caenorhabditis elegans, Chironomus dilutus, Chrysoperla 
carnea, Danaus plexippus, Deroceras reticulatum, Drosophila melanogaster, 
Enchytraeus albidus, Lepidostoma sp., Megaselia scalaris, Orius insidiosus, 
Pycnopsyche scabripennis, Rhizoglypus robini, Tetranychus urticae, Theridion 
impressum, and Tipula abdominalis. These species include insects, spiders, 
aquatic arthropods, earthworms, nematodes, and mollusks.

9  Conducting field studies is considered case-by-case, based on the level of 
potential hazard and exposure, and goals may be adjusted as information and 
experience accumulate (Rose, 2007).

specific species,10 while others have focused on impacts on commu-
nities of organisms, for example, impacts on all Collembola species. 
These studies sampled populations using a variety of trapping meth-
ods for aboveground species and various extraction methods for sub-
terranean species. The tests found no significant differences between 
populations of the species associated with Cry3Bb1 maize and those 
associated with non-GE maize varieties. Therefore, the results of these 
studies corroborate the results of the Tier 1 studies: Cry3Bb1 does 
not adversely affect NTO populations (Al-deeb et al., 2003; Carter et 
al., 2004; Ahmad et al., 2005, 2006a; McManus et al., 2005; Ahmad 
et al., 2006b; Bhatti et al., 2005; Bitzer et al., 2005; Wolfenbarger et 
al., 2008; Rauschen et al., 2009, 2011; Li et al., 2010; Zeilinger et al., 
2010; Höss et al., 2010, 2011; Schuppener et al., 2012; Priesnitz et 
al., 2013; Svobodová et al., 2013; Hendriksma et al., 2013).

Additionally, vertebrate toxicological testing of the Cry3Bb1 protein 
has been conducted on Mus musculus (mouse); Ictalurus punctatus 
(catfish); Gallus domesticus (chicken); Rattus norvegicus (rat); Bos 
taurus (cattle); and Colinus virginianus (northern bobwhite quail) 
(See Annex II). From these test data, scientists and regulators have 
concluded that the Cry3Bb1 protein is not toxic to animals or to 
humans (USDA, 2001, 2004; ACRE, 2003; PDABPI, 2003, 2004a; 
b, 2005; USEPA, 2003; EFSA, 2004, 2005, 2007, 2009b; COGEM, 
2005b; EU, 2005, 2006; Hammond et al., 2006; FSANZ, 2006; 
Doull et al., 2007; Healy et al., 2008; Scheideler et al., 2008; Sissener 
et al., 2011). 

The potential for harm to NTOs from exposure to Cry3Bb1 has 
been considered in risk assessments conducted by several regula-
tory authorities (USDA, 2001, 2004; USEPA, 2002, 2003, 2009, 
2011a; b; ACRE, 2003; CFIA, 2003; FSANZ, 2003, 2006; CFIA, 
2006; PDABPI, 2003, 2004a; b, 2005; UK, 2003; EFSA, 2009b; 
JBCH, 2004a; b; c; d, 2006a; b, 2008a; b, 2009a; b; EFSA, 2004, 
2005, 2007, 2009a; EU, 2005, 2006; COGEM, 2005a; b; EC, 
2011). Data collected from laboratory and field trials of GE maize 
producing Cry3Bb1 and submitted to regulators have established 
that the Cry3Bb1 protein is active specifically against the subset of 
coleopteran pests which feed on the below ground parts of maize 
plants and cause no significant harms to vertebrate species and other 
NTOs. Moreover, several studies have indicated that the use of tra-
ditional chemical pesticides to control Diabrotica sp. may result in 
more adverse impacts on NTOs and the environment than the use of 
Cry3Bb1, due to the specificity of Bt toxins and their rapid degrada-
tion in the environment (Evans, 2002; USEPA, 2003; Rice, 2004; 
McManus et al., 2005; Hönemann et al., 2008; Romeis et al., 2009; 
Carpenter, 2011; Yu et al., 2011).

10  Some of the non-target species that have been studied in greenhouse or field 
tests with Cry3Bb1 maize include Aglais urticae, Apis mellifera, Aporrectodea 
caliginosa, Aporrectodea trapezoides, Aporrectodea tuberculata, Chaetocnema 
pulicaria, Chrysoperla carnea, Coleomegilla maculata, Hippodamia convergens, 
Lumbricus terrestris, Macrocentrus cingulum, Orius insidiosus, Rhizoglypus 
robini, Rhopalosiphum maidis, Scymnus sp., Trigonotylus caelestialium, and 
Zyginidia scutellaris.
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Regulatory authorities have determined that adverse effects on NTOs 
are unlikely for several reasons. First, Cry3Bb1 has a narrow spec-
trum of pesticidal activity. Second, Tier I laboratory assays, employ-
ing a range of invertebrate species present in maize agricultural eco-
systems, or surrogates for those species, have shown that Cry3Bb1 
causes no significant observable effects in these species. Third, Tier 
I studies have demonstrated that Cry3Bb1 has no observable effect 
on representative vertebrate and aquatic species. Fourth, the levels 
of Cry3Bb1 used in these Tier I assays were much higher than those 
measured in GE maize tissues growing in the field. Fifth, field studies 
of maize varieties producing Cry3Bb1 showed no significant adverse 
effects on a wide range of arthropods, microbes, and other species. 
Sixth, when compared to insect control via Cry3Bb1, traditional 
insect control using chemical pesticides causes significantly more al-
terations to species diversity and poses greater harms non-target spe-
cies. Together, these findings indicate that Cry3Bb1 is unlikely to 
have adverse effects on natural populations of organisms, except for 
the target coleopteran crop pests it is meant to control.

Impacts of Cry3Bb1 Maize on Soil Biology

It is common agronomic practice to leave maize crop residues on and 
in the soil to improve soil moisture and texture and to foster healthy 
microbial populations (Taylor et al., 1964; Blevins et al., 1971; 
Karlen et al., 1994). Numerous field studies have been undertaken to 
assess any adverse effects from the practice of leaving Cry3Bb1 maize 
residues in the field to decompose after harvest. These studies have 
focused on two issues: whether Cry3Bb1 maize residues take longer 
to decompose than non-Bt varieties and whether crop residues from 
Cry3Bb1 maize varieties have higher levels of lignin, which would 
impede decomposition. None of these studies have found either a sig-
nificantly different rate of decomposition for Cry3Bb1 maize residues 
or significantly different levels of lignin due solely to the presence of 
the cry3Bb1 gene (Hönemann et al., 2008; Lehman et al., 2008a; b, 
2010; Poerschmann et al., 2008; Rauschen et al., 2008; Lawhorn et 
al., 2009; Swan et al., 2009; Zurbrügg et al., 2010; Xue et al., 2011). 
Therefore the presence of Cry3Bb1 maize residues in the soil is highly 
unlikely to result in adverse impacts.

Although the studies discussed above indicate that Cry3Bb1 from 
GE maize plants does not accumulate or persist in the soil, addi-
tional studies have been performed to identify any potentially ad-
verse effects of Cry3Bb1 maize cultivation on soil microbiology. 
These greenhouse and field studies have looked at the size, diversity, 
and biological activity of microbial populations in the soil surround-
ing the roots of Cry3Bb1 maize and conventional maize varieties. 
Some of the studies have looked specifically at effects of Cry3Bb1 on 
Metarhizium anisopliae, an entomopathic fungus that attacks western 
corn rootworm, and other studies have looked at possible effects on 
mycorrhizal fungi. None of these studies have found adverse impacts 
to soil microbes that would have significant environmental or agro-
nomic consequences (Devare et al., 2004, 2007; Icoz and Stotzky, 
2008; Lawhorn et al., 2009; Meissle and Romeis, 2009a; Meissle et 

al., 2009; Xue et al., 2011; Cheeke et al., 2012; Dohrmann et al., 
2013). 

ESTABLISHMENT AND PERSISTENCE IN THE 
ENVIRONMENT OF MAIZE PLANTS EXPRESSING 
Cry3Bb1

Biology of the Plant Species 

As discussed earlier, a full understanding of the biology of maize and 
its interactions with its receiving environment are fundamental to the 
environmental risk assessment of a GE maize variety (CFIA, 1994; 
OECD, 2003; OGTR, 2008). Information about the biology of the 
non-GE version of a crop, including any known adverse environ-
mental impacts associated with its commercial production, provides 
a basis of comparison with the GE version of the crop (Beadle, 1980; 
FSANZ, 2003; Raybould, 2007; FAO, 2008; Paoletti et al., 2008; 
EFSA, 2010; Gealy et al., 2010; Sanvido et al., 2012; Devos et al., 
2013). The risk assessment process identifies any differences between 
the GE and non-GE versions of the crop that could result in sig-
nificant adverse environmental impacts, such as the likelihood of a 
GE maize variety establishing and persisting outside of cultivation 
(OECD, 1992, 2007; EFSA, 2006).

Information about the phenotype of GE maize plants expressing 
Cry3Bb1 is collected from laboratory, greenhouse, and field trial 
studies and is presented in regulatory submissions to (1) identify 
any intentional changes to the phenotype that might impact the en-
vironmental safety of the plant and (2) to identify any unintended 
changes to the biology of the plant that might impact environmental 
safety. Phenotypic data in regulatory submissions and peer-reviewed 
publications can help regulators identify characteristics of the plant 
that might enhance its survival or persistence (i.e., potential weedi-
ness), or characteristics that may negatively affect agricultural per-
formance (e.g., disease susceptibility and yield data). The pheno-
typic observations take into account the desired phenotype result-
ing from the transgenic trait, in this case insect predation resistance 
mediated by Cry3Bb1. Some of the collected data are quantitative 
(e.g., plant height or percent seed germination) while other data are 
qualitative and observational (e.g., symptoms of disease susceptibil-
ity). Data submitted to regulatory authorities by the developers of 
Cry3Bb1 maize varieties have indicated that the phenotypes of GE 
maize plants expressing Cry3Bb1 were within the reported ranges for 
non-GE maize varieties. Collectively, regulators have determined that 
the phenotypic data do not support the hypothesis that the expres-
sion of Cry3Bb1 had any unintended impact on the gross morphol-
ogy or phenotypic characteristics of maize plants, besides conferring 
resistance to coleopteran insect pests (USDA, 2001, 2004, 2005; 
PDABPI, 2003, 2004a; b, 2005; USEPA, 2003; JBCH, 2004a; b; c; 
d, 2006a; b, 2008a; b, 2009a; b).
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Weediness in Agricultural Environments

Maize is not generally regarded as a weed, possessing few of the char-
acteristics that increase the likelihood of a plant to become a weed, 
such as seed dormancy, shattering, and competitiveness (Baker, 1965, 
1974). There are no data indicating that expression of Cry3Bb1 re-
sults in altered seed dormancy, over-wintering capacity, or other 
characteristics that would alter the prevalence of volunteer maize in 
subsequent growing seasons. Following-season maize volunteers pro-
ducing Cry3Bb1 would not be expected to present any unusual weed 
management challenges and can be dealt with in the same manner as 
conventional maize volunteers (Carpenter et al., 2002; CFIA, 2003, 
2006; JBCH, 2006a; b, 2008a; b, 2009a; b; USDA, 2004, 2005; 
JBCH, 2004a; b; c; d; COGEM, 2005a; b; EFSA, 2009b; Raybould 
et al., 2011).

Weediness in Non-Agricultural Environments

The primary mechanism by which the cry3Bb1 gene might be intro-
duced into a non-agricultural environment is through the movement 
of propagules outside of cultivated areas (Lee and Natesan, 2006), and 
regulators evaluate how such introductions may result in a GE plant 
becoming weedy or invasive. As a result of extensive selective breed-
ing, commercial maize varieties are severely restricted in their ability 
to persist in non-agricultural environments without human interven-
tion, and maize is not considered to be an invasive or aggressive weed 
outside of agricultural systems (Carpenter et al., 2002). Agronomic 
data show that Cry3Bb1 does not have a significant impact on traits 
associated with weediness. Although release from natural control fac-
tors (including insect herbivores) has been offered as a partial expla-
nation for the success of invasive species (Mack, 1996; Keane and 
Crawley, 2002; Mason et al., 2004; Blumenthal, 2005), regulatory 
decisions have determined that it is unlikely that resistance to co-
leopteran pests would allow maize producing Cry3Bb1 to become 
weedy or invasive in non-agricultural environments (Carpenter et 
al., 2002; CFIA, 2003, 2006; JBCH, 2006a; b, 2008a; b, 2009a; 
b; USDA, 2004, 2005; JBCH, 2004a; b; c; d; COGEM, 2005a; b; 
EFSA, 2009b; Raybould et al., 2011).

Movement of the Transgene to Sexually Compatible 
Relatives

The movement of transgenes from a GE crop plant to one of its wild 
relatives is both seed and pollen mediated, since the dispersal of seeds 
will create additional sources of pollen. However, the dispersal of 
pollen is only the first step in the pathway that could lead to the in-
trogression of a transgene in a wild population of sexually compatible 
crop relatives (Carpenter et al., 2002; Chandler and Dunwell, 2008). 
In addition to the dispersal of viable seed and pollen outside the field 
where the GE crop was grown, several other steps must occur: 

•	 Wild relatives of the crop must be near enough for viable pollen 
from the crop to reach them.

•	 Pollen must reach the wild relatives at a time when they are pro-
ducing flowers receptive to pollen.

•	 Cross pollination must not be barred by incompatibility mecha-
nism and must result in the production of viable hybrid seed.

•	 Hybrid seed must bear a functional version of the gene and ex-
press the trait.

•	 The trait must be expressed so as to provide the hybrid progeny 
with a significant competitive advantage over its wild maternal 
parent.

•	 Significant selection pressure must exist in the wild population 
to favor the survival of progeny bearing the trait.

A thorough understanding of maize biology can determine the likeli-
hood that one or more of these steps will occur. For example, culti-
vated maize varieties have been bred to retain their seeds on the plant 
for ease of harvest, and therefore they have lost the ability to dis-
perse their seeds. Maize is predominantly wind pollinated, but maize 
pollen quickly loses viability once it is shed, and the likelihood of 
successful pollination falls off rapidly with increasing distance from 
the parent plant, therefore the potential for gene flow is highly un-
likely (Carpenter et al., 2002; OECD, 2003; USEPA, 2003; Devos 
et al., 2005; Goggi et al., 2006; EFSA, 2009b). In the four countries 
that have authorized maize expressing Cry3Bb1, regulators have im-
posed no confinement conditions on its cultivation, concluding that 
Cry3Bb1 maize is as safe as conventional corn varieties (CFIA, 2003, 
2006; JBCH, 2004a; USDA, 2005; MinAgri, 2010).

Teosintes are a group of species in the Zea genus that are sexually 
compatible with cultivated maize. Wild teosinte populations are lim-
ited to Mexico, Guatemala, and a single population in Nicaragua. 
While teosinte is considered a weed by some farmers in Mexico, 
it is used as a forage plant by other farmers, and it is also consid-
ered a culturally significant species (González and Corral, 1997; 
Mondragon-Pichardo and Vibrans, 2005). Although maize freely hy-
bridizes with wild teosintes, the potential for gene introgression into 
teosinte is thought to be limited (Castillo-Gonzalez and Goodman, 
1997; OECD, 2003; Baltazar et al., 2005). Crosses between teosinte 
and GE maize expressing Cry3Bb1 are not expected to occur more 
frequently than those between teosinte and traditionally bred maize 
varieties (Carpenter et al., 2002).

COMPOSITIONAL ANALYSIS OF MAIZE PLANTS 
EXPRESSING Cry3Bb1

A compositional analysis is required in many regulatory approv-
al processes for GE plants intended to be used in food or feed. 
Compositional data can be used to identify unintended changes in 
the crop due to the presence of the transgene. The analysis typically 
compares the GE plant to the untransformed parent line or a closely 
related isoline, and the analytes measured depend on the crop and its 
intended uses. The analysis may use plants grown in a variety of loca-
tions and may include data from multiple growing seasons, because 
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local environmental conditions may impact nutritional composition 
even in conventionally bred varieties. The goal of the analysis is to 
verify that the values obtained for the GE plant are within the range 
observed in traditional varieties grown under comparable conditions.

Seed and forage from Cry3Bb1 maize has undergone proximate anal-
ysis to determine levels of crude protein, crude fat, fiber, moisture, 
and ash; and levels of select minerals, fatty acids, amino acids, and 
antioxidants have also been determined. Many common crop plants 
are known to produce toxins or anti-nutritive compounds, for exam-
ple, maize is known to produce the anti-nutritive compounds phytic 
acid, raffinose, and trypsin inhibitor (OECD, 2003); and levels of 
these compounds have also been measured to determine whether the 
presence of the transgene has inadvertently resulted in significantly 
elevated levels. Composition data from maize varieties expressing 
Cry3Bb1 have been compared with data obtained from near isogenic 
comparators as well as data accumulated in various databases repre-
senting hundreds of commercial maize varieties. These studies have 
established that Cry3Bb1 maize is nutritionally equivalent to con-
ventional maize varieties and that the presence of the cry3Bb1 gene 
does not result in elevated levels of naturally occurring toxins and 
anti-nutritive compounds in maize (USDA, 2001, 2004; FSANZ, 
2003, 2006; Taylor et al., 2003, 2007; EFSA, 2004; George et al., 
2004; Poerschmann et al., 2009; Lundry et al., 2013). These data are 
presented in Annex III. Regulators in several jurisdictions have deter-
mined that these data revealed no differences relevant to environmen-
tal safety (USFDA, 2001, 2005; CFIA, 2003, 2006; PDABPI, 2003, 
2004a; b, 2005; UK, 2003; FSANZ, 2003, 2006; Health Canada, 
2003, 2006; EFSA, 2004, 2005, 2009a; b; Lundry et al., 2013).

CONCLUSION

The Cry3Bb1 protein produced by insect-resistant GE maize plants 
is derived from the common soil bacterium Bacillus thuringiensis 
and is specifically toxic to coleopteran insects. Toxicity testing with 
a broad range of representative non-target organisms demonstrated 
that Cry3Bb1 produced no observable effects at concentrations sig-
nificantly higher than the expected environmental concentrations 
of Cry3Bb1. Field data suggest that cultivation of GE maize plants 
expressing Cry3Bb1 does not adversely affect the abundance of non-
target arthropods or impact soil microbial populations. Cry3Bb1 in 
plants can be toxic to non-target Coleoptera, but regulatory risk as-
sessments for approved products have concluded that the risk is low, 
due to the lack of exposure to the toxin in the environment, especially 
when compared to other insect-control practices. The weight of evi-
dence from analyses of phenotypic and compositional data demon-
strates that Cry3Bb1 expression in approved maize varieties does not 
alter the gross physiology of the crop plants and indicates that these 
plants are not more likely to become weedy or invasive than conven-
tional maize varieties. To date, every regulatory body that has evalu-
ated the safety of events MON863 and MON88017 has concluded 
that these varieties are as safe as conventionally bred maize varieties 
and pose no significant environmental or food safety concerns.
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Annex I: SUMMARY OF Cry3Bb1 PROTEIN EXPRESSION DATA

The tables that follow present summary data from applicant dossiers and regulatory decisions documents concerning maize events MON863 
and MON88017 occurring alone and in combination with other transgenic traits. Whenever possible, the data and accompanying statistics 
are presented as they appeared in the cited document to facilitate cross-referencing. Additional information on data collection and sampling 
methodologies can be found in the referenced sources.

Table I.1.	 Summary of Cry3Bb1 protein level measured in MON863 tissue samples collected from multiple field sites (CFIA, 2003; FSANZ, 2003; 
USDA, 2001; USFDA, 2001).

Tissue
(days post-planting) Parameter Cry3Bb11

(µg/g fresh weight)

Young leaf2

(21)

Mean ± SD
Range

n

81 ± 11
65 – 93

4

Forage3

(90)

Mean ± SD
Range

n

39 ± 10
24 – 45

4

Mature Root3

(90)

Mean ± SD
Range

n

41 ± 13
25 – 56

4

Grain4

(125)

Mean ± SD
Range

n

70 ± 17
49 – 86

4

Silk5

(58)
Mean ± SD

n
10
1

Pollen6

(60)

Mean ± SD
Range

n

62 ± 18
30 – 93

13

1	 Limit of detection for Cry3Bb1 variant protein ranges from 0.08 μg/g in silk to 0.76 μg/g in root tissues. 
2	 Samples were a pool of tissues ranging from 37 to 50 plants collected from each site at approximately V-4 stage.
3	 Forage (above ground portion only) and mature root were a composite of two plants collected from each site at early dent stage.
4	 Process grain samples were combined from 28-41 corn ears collected from each site at plant maturity and dried to about 15% moisture content.
5	 Silk was combined (n=1) from five plants at about 50% pollen shed from one field site.
6	 In the US, one sample of pollen tissue was combined over a period of 7 days (about 60 days post planting or about 50% pollen shed). Samples of pollen from Argentina 

were combined as four replicates per site (three sites total) and collected about 65 days post-planting over about 5 days.

http://epa.gov/ocspp/pubs/frs/home/guidelin.htm
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Table I.2.	 Production of Cry3Bb1 in MON863 maize (µg/gram fresh 
weight) (USEPA, 2003).

Leaf Grain Pollen Root Whole plant*

30-93 49-86 30-93 3.2-66 13-54

*	 Above ground portion
Table I.3.	 Production of Cry3Bb1 in MON863 maize (µg/gram fresh weight) (USEPA, 2003).

Collection  
Post-planting

Parameter Cry3Bb1 in Leaf
(µg/g fw)

Cry3Bb1 in Whole Plant*
(µg/g fw)

Cry3Bb1 in Root
(µg/g fw)

21 days Mean ± SD
Range

n

81 ± 14
65 - 93

3

not collected not collected

35 days Mean ± SD
Range

n

79 ± 6.4
72 – 84

3

46 ± 7.8
38 – 54

3

58 ± 10
46 – 66

3

49 days Mean ± SD
Range

n

43 ± 18
30 – 56

2

31 ± 3.3
28 – 33

2

57 ± 3.8
54 – 59

2

90 days Mean ± SD
Range

n

not collected 37 ± 12
24 – 45

3

37 ± 11
25 - 47

3

126 days Mean ± SD
Range

n

not collected 25 ± 11
13 – 35

3

24 ± 18
3.2 – 36

3

*	 Above ground portion

Table I.4.	 Cry3Bb1 expression levels in MON88017 X MON810 and 
MON88017 maize grain (µg/g dry weight) (EFSA, 2009a)

Cry3Bb1 MON88017 X MON810 MON88017

Mean (SD)
Range

9.3 (3.4)
3.9 – 13

15 (3.6)
10 – 22

Table I.5.	 Cry3Bb1 levels in different tissues of MON88017 collected during four developmental stages in three growing seasons, 2005 – 2007 
(Nguyen and Jehle, 2009).

Tissue Parameter
Developmental Stage1

BBCH19 BBCH30 BBCH63 BBCH83

Root
Mean (SD)2

Range
n

129.7 (4.1) dA
76.8-175.3

48

99.0 (7.2) cA
36.6-289.3

48

65.8 (3.7) bB
33.1-149.8

48

40.3 (2.0) aC
15.8-74.5

48

Stalk
Mean (SD)

Range
n

184.0 (8.7) dB
70.1-320.8

48

113.9 (6.5) cAB
31.3-206.3

48

113.9 (6.5) cAB
31.3-206.3

48

37.4 (3.1) aBC
12.2-107.2

48

Lower leaf
Mean (SD)

Range
n

126.8 (8.0) bBC
57.0-298.4

48

117.0 (8.4) bC
31.7-242.3

48

33.51 (4.3) aAB
0.74-133.1

48

Upper leaf
Mean (SD)

Range
n

228.4 (11.0) dC
116.4-391.6

48

151.7 (8.6) cC
22.8-304.8

48

125.5 (4.1) bC
63.6-196.8

48

100.2 (3.5) aD
53.0-162.6

48

Anther
Mean (SD)

Range
n

65.8 (2.1) B
37.5-108.1

48

Pollen (µg/g fresh wt)
Mean (SD)

Range
n

3.81 (0.2)
2.3-5.9

32

Silk
Mean (SD)

Range
n

110.2 (6.5) C
25.9-205.0

32

Grain
Mean (SD)

Range
n

27.1 (0.6) A
7.2-59.4

48

1	 BBCH19 = Nine or more leaves unfolded; BBCH30 = Beginning of stem elongation; BBCH63 = Flowering, anthesis; BBCH83 = Ripening, early dough: kernel soft, 
about 45% dry matter.

2	 SE = standard error; n = number of samples. The range gives the minimum and maximum value during the 3-year survey. Means within a row followed by the same 
lowercase letter are not significantly different. Means within a column followed by the same capital letter are not significantly different (P>0.05).

Table I.3.	 Cry3Bb1 protein levels in MON863 measured over the 
growth of the plant (FSANZ, 2003; USDA, 2001).

Collection  
Post-

planting
Parameter

Cry3Bb1 in 
Leaf

(µg/g fw)

Cry3Bb1 in 
Whole Plant*

(µg/g fw)

Cry3Bb1 in 
Root

(µg/g fw)

21 days
Mean ± SD

Range
n

81 ± 14
65 - 93

3
not collected not collected

35 days
Mean ± SD

Range
n

79 ± 6.4
72 – 84

3

46 ± 7.8
38 – 54

3

58 ± 10
46 – 66

3

49 days
Mean ± SD

Range
n

43 ± 18
30 – 56

2

31 ± 3.3
28 – 33

2

57 ± 3.8
54 – 59

2

90 days
Mean ± SD

Range
n

not collected
37 ± 12
24 – 45

3

37 ± 11
25 - 47

3

126 days
Mean ± SD

Range
n

not collected
25 ± 11
13 – 35

3

24 ± 18
3.2 – 36

3

*	 Above ground portion
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Table I.6.	 Levels of the Cry3Bb1 protein in tissues of MON88017 (CFIA, 2006; EFSA, 2009b; USDA, 2004).

Tissue Type Growth Stage

Cry3Bb1
Mean (SD)1

[Range]2

(μg/g dwt) (μg/g fwt)

Young leaf V2-V3
(14-22 DAP3)

570 (170)
[230-820]

76 (23)
[28-110]

Pollen R1
(62-69 DAP)

25 (4.2)
[17-32]

14 (2.5)
[11-20]

Silk R1
(62-69 DAP)

380 (65)
[300-500]

37 (5.6)
[30-45]

Forage
R4-R6

(early dent)
(97-124 DAP)

95 (19)
[75-130]

27 (5.5)
[22-39]

Forage root
R4-R6

(early dent)
(97-124 DAP)

130 (29)
[98-170] 21 (3.1)

[17-27]

Grain R6
(133–146 DAP)

15 (3.6)
[10-22]

13(3.1)
[8.7-19]

Stover
R6

(after harvest)
(133-147 DAP)

88 (13)
[71-110]

30 (4.4)
[25-39]

1	 The mean and standard deviation were calculated across sites and replicates (n=9).
2	 Minimum and maximum values were determined for each tissue type across sites.
3	 DAP = days after planting.

ANNEX II: SUMMARY OF Cry3Bb1 ECOTOXICITY DATA

Table II.1.	 Summary of results from ecological toxicity tests with Cry3Bb1 proteins. MON863 plant tissue served as the test substance for some assays. 
All other assays employed an artificial diet containing the EG11231 variant of Cry3Bb1. Risk conclusions are based on protein concentrations in plant 
tissues from event MON863 (USDA, 2001).

Test Organism Test Substance Results Conclusions

Cladoceran
(Daphnia magna) Pollen containing Cry3Bbl NOEC ≥ 2.26 µg/l NOEC > 141X predicted maximum concentration 

in surface water

Collembola
(Folsomia candida) Leaf containing Cry3Bbl NOEC ≥ 872.5 µg/l protein/g diet NOEC > 66X predicted maximum concentration 

in soil

Channel catfish
(Ictalurus punctatus) Grain containing Cry3Bbl No effect on growth or survival at 35% 

of diet No significant risk

Larval Ladybird Beetle
(Coleomegilla maculata) Pollen containing Cry3Bb1 No effect on development or survival at 

50% of diet No significant risk

Adult Ladybird Beetle
(Coleomegilla maculata) Pollen containing Cry3Bb1 No effect on survival at 50% of diet No significant risk

Adult Ladybird Beetle
(Hippodamia convergens) Pollen containing Cry3Bb1 No effect on survival at 50% of diet No significant risk

Adult Honey Bee
(Apis mellifera) EG11231 in an artificial diet NOEC ≥ 360 µg/ml in diet NOEC > 3.9X predicted maximum concentration 

in pollen

Larval Honey Bee
(Apis mellifera) EG11231 in water NOEC ≥ 1790 µg/ml as a single dose NOEC > 19X predicted maximum concentration 

in pollen

Green Lacewing Larvae
(Chrysoperla carnea) EG11231 in an artificial diet NOEC ≥ 8000 µg/g in diet NOEC > 86X maximum environmental 

concentration predicted in pollen

Parasitic Hymenoptera
(Nasonia vitripennis) EG11231 in an artificial diet NOEC = 400 µg/ml in diet NOEC > 4.3X maximum environmental 

concentration predicted in pollen

Earthworm
(Eisenia foetida) EG11231 in soil NOEC = 57 mg/kg in soil NOEC ≥ 4.3 X maximum estimated environmental 

exposure in soil
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Table II.2.	 Results of non-target wildlife studies event MON863 maize (USEPA, 2003).

Guideline Number Study Results

USEPA OPPTS 885.405 Dietary Toxicity Study 
with the Northern 
Bobwhite

The dietary LC50 value for Cry3Bb1 corn grain to juvenile Northern Bobwhite was > 70,000 ppm (10% of 
the diet) in an 8-day study. No adverse effects on avian wildlife are expected from incidental field exposure to 
Cry3Bb1 corn.

885.42 Freshwater Fish Testing No treatment mortality or behavior change was observed among channel catfish in an 8-week sub-chronic study 
when fed diets containing 35% Cry3Bb1 corn.

Series 72, Subdivision E Acute Toxicity Test with 
Daphnia magna

The 48-hour LC50 value for Cry3Bb1 corn pollen when administered to neonate daphnids was >120 mg 
pollen/L, a maximum hazard dose. No adverse effects were noted.

885.438 Adult Honey Bee Testing An adult honeybee maximum hazard dose feeding study showed the LC50 of the Cry3Bb1 protein to be >360 
µg/mL (20X the concentration found in pollen).

885.434 Parasitic Hymenoptera 
Larva Testing

The LC50 for parasitic Hymenoptera was determined to be >400 ppm Cry3Bb1 protein. Although 400 ppm 
Cry3Bb1 protein is only 1X field concentration in plants rather than 10X, parasitic Hymenoptera are not 
expected to feed directly on corn plant tissue.

885.434 Dietary Toxicity Study 
with Green Lacewing 
Larvae

The LC50 for green lacewing larvae was determined to be >8,000 ppm Cry3Bb1 protein (20X field exposure). 
Based on these results it can be concluded that green lacewing will not be adversely affected when exposed to 
Cry3Bb1 in the field.1

885.434 Effects of Bt Protein 
on Adult Lady Beetles 
(Hippodamia convergens)

This maximum hazard dose study showed that the LC50 for Cry3Bb1when fed to adult H. convergens is >8,000 
μg purified Bt protein/mL diet., equivalent to 20X the maximum Bt protein concentration in plant tissue.

885.434 Lady Beetle Larval 
Pollen Feeding Study 
(Coleomegilla maculata)

The LC50 for Cry3Bb1 expressed in pollen is >93 μg/g fresh pollen weight. The larvae were observed through 
pupation to adult emergence. It can be concluded from this study that C. maculata larvae will not be adversely 
affected by Cry3Bb1 field corn pollen.

885.434 Adult Lady Beetle Pollen 
Feeding Study (C. 
maculata)

No significant adverse effects were noted in a 30 day 50% pollen feeding study. Based on these results, no hazard 
to C. maculata is expected when feeding on Cry3Bb1 corn pollen in the field.

885.434 Adult Lady Beetle Pollen 
Feeding Study (H. 
convergens)

No significant adverse effects were noted in a 15 day 50% pollen in honey water feeding study. Based on these 
results, no hazard to H. convergens is expected if feeding on Cry3Bb1corn pollen in the field.

885.434 Collembola Chronic 
Dietary Toxicity Study

The LC50 of the Cry3Bb1 protein for Collembola was found to be >872.5 µg (50% corn leaf tissue in the diet). 
No adverse reproductive effects were noted. It can be concluded from this test that Cry3Bb1 protein does not 
pose a hazard to Collembola, a representative of a beneficial decomposer soil inhabiting species.

850.62 Earthworm Toxicity 
Study

A maximum hazard dose 14-day LC50 for earthworms exposed to Cry3Bb1 protein in an artificial soil substrate 
was determined to be > 570 mg Cry3Bb1 protein/kg dry soil, or greater than 10 times the maximum EEC of the 
protein. The data show that no adverse effects to earthworms are expected from exposure to Cry3Bb1 protein 
producing corn plants.

OECD Guideline 207 Earthworm Toxicity 
Study

There were no earthworm mortalities or other remarkable observations during the 14 day study. The LC50 value 
is greater than the highest maximum hazard concentration tested.

885.434 Monarch Butterfly Larval 
Pollen Feeding Study

This study has demonstrated that corn pollen expressing the Cry3Bb1 protein will not result in acute toxic or 
developmental effects to monarch larvae.

1	 USEPA requested that because of questionable ingestion of the test material, another species (e.g., minute pirate bug) that is more likely to be exposed to Cry3Bb1 
should be tested.
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Table II.3.	 Calculated margins of exposure to NTOs for the Cry3Bb1 protein produced in MON88017 (USDA, 2004).

Test Organism Cry3Bb1 Variant Origin (Tissue) Results
Margins of Exposure1

MON 880172

(NOEC ≥)3
MON 863
(NOEC ≥)

Cladoceran
(Daphnia magna)

11098 (Q349R) MON 863 (pollen) NOEC ≥ 2.26 μg/l 665x surface water 
MEEC

141x surface water 
MEEC

Collembola
(Folsomia candida)

11098 (Q349R) MON 863 (leaf ) NOEC ≥ 872.5 µg/g 88.6x soil MEEC 105x soil MEEC

Adult Honey Bee
(Apis mellifera)

11231 B.t. NOEC ≥ 360 µg/ml 18x max. pollen level 3.8x max. pollen level

Larval Honey Bee
(Apis mellifera)

11231 B.t. NOEC ≥ 1790 µg/ml as 
a single dose

89.5x max. pollen level 19x max. pollen level

Adult Ladybird Beetle
(Hippodamia convergens)

11231 B.t. NOEC ≥ 8000 µg/g 400x max. pollen level 86x max. pollen level

Green Lacewing Larvae
(Chrysoperla carnea)

11231 B.t. NOEC ≥ 8000 µg/g 400x max. pollen level 86x max. pollen level

Parasitic Hymenoptera
(Nasonia vitripennis)

11231 B.t. NOEC = 400 µg/ml 20x max. pollen level 4.3x max. pollen level

Earthworm
(Eisenia fetida)

11231 B.t. NOEC = 57 mg/kg 5.8x MEEC in soil 6.9x MEEC in soil

1	 Margin of exposure = ratio of NOEC to MEEC.
2	 Based on the following MEEC values for the Cry3Bb1 protein: 110 µg/g fresh weight in leaf, 20 µg/g fresh weight in pollen, 9.85 mg/kg in soil, and 0.0034 µg/l in 

aquatic environments.
3	 NOEC = no observed effect concentration; MEEC – maximum expected environmental concentration.

Table II.4.	 Levels of the Cry3Bb1 protein in overseason tissues of MON88017 (USDA, 2004).

Tissues
(9 samples)

V2 – V3
(14 – 22 DAP1)

V5
(26 – 34 DAP)

V8
(40-45 DAP)

V11-V17
(55-62 DAP)

R4-R6
(97-124 DAP)

R6
(133-147 DAP)

μg/g dry weight

Leaf Mean (SD) 570 (170) 430 (58) 310 (45) 260 (44)
NA NA

Range 230 – 820 310 – 510 240 – 380 190 – 340

Whole plant Mean (SD) 500 (64) 380 (170) 310 (48) 220 (23)
NA NA

Range 410 – 590 150 – 600 230 – 380 190 – 250

Root Mean (SD) 370 (80) 250 (71) 210 (78) 180 (37) 130 (29) 100 (19)

Range 240 – 510 190 – 420 150 – 410 110 – 230 98 – 170 77 – 140

μg/g fresh weight

Leaf Mean (SD) 76 (23) 75 (10) 69 (12) 62 (9.2)
NA NA

Range 28 – 110 58 – 92 55 – 90 49 – 77

Whole plant Mean (SD) 50 (6.4) 37 (8.0) 34 (5.2) 32 (4.4)
NA NA

Range 41 – 59 26 – 48 25 – 42 26 – 38

Root Mean (SD) 39 (8.1) 34 (8.4) 29 (8.3) 26 (5.4) 21 (3.1) 18 (2.6)

Range 24 – 51 25 – 55 21 – 50 16 – 34 17 – 27 14 - 22

1	 DAP = days after planting, SD = standard deviation, NA = not applicable.
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ANNEX III: SUMMARY OF COMPOSITIONAL ANALYSES OF GE PLANTS EXPRESSING Cry3Bb1, 
INCLUDING ANALYSES OF TOXINS, ANTI-NUTRIENTS, AND SECONDARY METABOLITES

Table III.1.	 Compositional analysis of the grain collected from corn event MON863, nontransgenic control corn, and commercial corn varieties (USDA, 
2001).

Component Unit MON863
Mean

Control
Mean Commercial Range

Ash % dry wt. 1.35 1.41 0.62 – 1.53

Carbohydrates % dry wt. 83.3 82.8 82.5 – 87.8

Acid detergent fiber % dry wt. 4.45 4.50 3.65 – 6.09

Neutral detergent fiber % dry wt. 11.6 12.0 9.50 – 15.0

Moisture % fresh wt. 10.0 10.2 8.75 – 15.7

Total fat % dry wt. 3.77 3.64 2.18 – 3.86

Protein % dry wt. 11.6 12.2 7.95 – 13.8

Calcium % dry wt. 0.005 0.005 0.004 – 0.006

Copper mg/kg dry wt. 2.26 2.19 1.03 – 2.15

Iron mg/kg dry wt. 23.6 24.2 16.7 – 28.7

Magnesium % dry wt. 0.13 0.14 0.091 – 0.14

Manganese mg/kg dry wt. 5.81 6.15 3.51 – 9.80

Phosphorus % dry wt. 0.40 0.42 0.33 – 0.43

Potassium % dry wt. 0.43 0.44 0.33 – 0.43

Zinc mg/kg dry wt. 22.2 23.7 12.8 – 31.2

Phytic Acid % dry wt. 1.11 1.23 0.73 – 1.17

Trypsin inhibitor TUI/mg dry wt. 2.30 2.48 0.58 – 3.05

Vitamin E mg/kg dry wt. 0.011 0.013 0.004 – 0.014

16:0 Palmitic acid % of total FA 12.0 11.9 9.07 – 12.1

18:0 Stearic acid % of total FA 1.66 1.66 1.44 – 2.40

18:1 Oleic acid % of total FA 22.0 21.9 21.3 – 32.1

18:2 Linoleic acid % of total FA 62.2 62.5 54.2 – 63.6

18:3 Linolenic acid % of total FA 1.20 1.24 0.97 – 1.36
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Table III.2.	 Fiber, mineral, and proximate composition of grain from corn event MON863 (George et al., 2004).

1999 U.S. Trials1 1999 Argentina Trials2

Component3
MON863

Mean
(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

MON863
Mean

(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

Literature 
Range

Historical 
Range7

Protein 11.60
(10.43 - 12.82)

12.19
(10.45 - 13.80) 5.47, 16.57 10.39

(9.54 - 11.36)
10.40

(9.30 - 10.92) 3.37, 16.57 6.0 - 12.0i
9.7 - 16.1j 9.0 - 13.6

Total Fat 3.77
(3.00 - 4.56)

3.64
(3.05 - 4.29) 1.68, 4.64 3.59

(3.00 - 4.42)
3.60

(2.83 - 3.94) 1.26, 6.25 3.1 - 5.7i
2.9 - 6.1j 2.4 - 4.2

Ash 1.35
(0.84 - 1.71)

1.41
(0.89 - 1.89) 0.26, 2.06 1.55

(1.34 - 1.81)
1.51

(1.32 - 1.80) 0.97, 1.76 1.1 - 3.9i 1.2 - 1.8

ADF9 4.45
(3.49 - 5.23)

4.50
(3.62 - 5.89) 1.98, 6.62 3.47

(2.65 - 4.84)
3.25

(2.58 - 4.44) 1.35, 5.75 3.3 - 4.3i 3.1 - 5.3

NDF9 11.64
(9.21 - 13.47)

12.02
(10.31 - 15.82) 6.51, 16.28 12.67

(9.70 - 19.86)
11.60

(8.49 - 18.12) 4.35, 17.20 8.3 - 11.9i 9.6 - 15.3

Carbohydrates 83.30
(81.83 - 85.00)

82.76
(80.70 - 84.80) 78.97, 90.36 84.58

(83.28 - 87.10)
84.49

(83.84 - 85.92) 77.60, 92.24 Not reported
in this form 81.7 - 86.3

Moisture 10.03
(8.54 - 11.20)

10.23
(8.60 - 11.40) 5.09, 18.62 12.52

(11.10 - 15.10)
12.73

(11.60 - 15.30) 0, 20.94 7 - 23i 9.4 - 15.8

Calcium 0.0052
(0.0041 - 0.0064)

0.0053
(0.0043 - 0.0089) 0.0022, 0.0073 0.0041

(0.0028 - 0.0051)
0.0044

(0.0033 - 0.0055) 0.0016, 0.0090 0.01 - 0.1i 0.003 - 0.006

Copper 2.26
(1.72 - 3.18)

2.19
(1.60 - 2.88) 0.25, 2.70 2.29l

(1.88 - 2.63)
2.82

(2.32 - 3.22) 0, 3.91 0.9 - 10i Not available

Iron 23.55
(21.13 - 26.36)

24.18
(20.57 - 28.16) 12.52, 35.06 24.91

(21.97 - 31.67)
25.33

(22.84 - 27.19) 2.49, 37.25 1 - 100i Not available

Magnesium 0.13
(0.12 - 0.14)

0.14
(0.12 - 0.16) 0.082, 0.17 0.13

(0.12 - 0.16)
0.13

(0.12 - 0.14) 0.074, 0.17 0.09 - 1.0i Not available

Manganese 5.81
(3.75 - 7.40)

6.15
(4.01 - 8.28) 0, 12.84 7.74

(5.95 - 9.72)
7.58

(6.04 - 9.05) 0.90, 11.97 0.7 - 54i Not available

Phosphorus 0.40
(0.37 - 0.45)

0.42
(0.39 - 0.46) 0.21, 0.47 0.35

(0.30 - 0.41)
0.36

(0.31 - 0.39) 0.25, 0.39 0.26 - 0.75i 0.288 - 0.363

Potassium 0.43
(0.40 - 0.48)

0.44
(0.39 - 0.48) 0.28, 0.48 0.43

(0.38 - 0.49)
0.43

(0.41 - 0.46) 0.23, 0.52 0.32 - 0.72i Not available

Zinc 22.15
(17.95 - 25.25)

23.68
(18.77 - 28.14) 6.31, 37.95 27.15

(23.50 - 30.31)
28.13

(24.38 - 31.63) 6.10, 40.05 12 - 30i na

1	 Data from four replicated U.S. sites.
2	 Data from four replicated sites in Argentina.
3	 Percent dry weight of sample except for moisture as percent fresh weight and copper, iron, manganese, and zinc as mg/kg dry weight.
4	 Nontransgenic control.
5	 Commercial hybrids planted at each trial site. The commercial hybrids for Argentina also included six hybrids grown in the E.U. during 1999.
6	 Tolerance interval is specified to contain 99% of the commercial line population; negative limits are set to zero.
7	 Range for nontransgenic control hybrids planted in Monsanto Company field trials conducted between 1993 and 1995.
8	 Range denotes the lowest and highest individual value across sites for each line.
9	 ADF = acid detergent fiber; NDF = neutral detergent fiber. 
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Table III.3.	 Fiber and proximate composition of forage from corn event MON863 (George et al., 2004).

1999 U.S. Trials1 1999 Argentina Trials2

Component3
MON863

Mean
(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

MON863
Mean

(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

Literature 
Range

Historical 
Range7

Protein 8.62
(6.91 - 10.40)

8.33
(5.99 - 10.55) 4.94, 11.97 8.92

(7.59 - 10.04)
9.52

(8.35 - 10.60) 0.22, 15.79 5.11 - 10.27 4.8 - 8.4

Total Fat 2.40
(0.92 - 3.16)

2.35
(1.30 - 3.33) 1.03, 3.24 1.59

(0.81 - 2.65)
1.56

(0.71 - 2.37) 0, 4.49 0.35 - 3.62 1.4 - 2.1

Ash 4.73
(3.62 - 5.65)

5.00
(3.81 - 6.27) 3.04, 5.58 6.51

(4.24 - 8.08)
6.32

(4.88 - 8.23) 2.33, 7.70 2.00 - 6.60 2.9 - 5.1

ADF9 28.67
(21.74 - 43.30)

28.41
(23.39 - 32.08) 9.33, 45.44 26.79

(22.55 - 31.27)
27.22

(22.83 - 30.32) 15.09, 34.96 18.32 - 40.99 21.4 - 29.2

NDF9 43.25
(37.97 - 49.67)

42.94
(37.32 - 51.85) 22.71, 56.02 42.87

(35.21 - 48.21)
43.20

(39.15 - 47.21) 24.59, 55.98 26.37 - 54.45 39.9 - 46.6

Carbohydrates 84.24
(82.29 - 86.32)

84.32
(80.78 - 87.21) 81.22, 88.97 82.98

(80.74 - 85.10)
82.61

(81.09 - 84.68) 78.37, 91.73 83.16 - 91.55 84.6 - 89.1

Moisture 71.09
(69.30 - 73.10)

71.68
(69.80 - 74.50) 62.70, 77.69 73.32

(70.10 - 75.10)
74.13

(70.20 - 77.70) 56.69, 87.10 55.30 - 75.30 68.7 - 73.5

1	 Data from four replicated U.S. sites.
2	 Data from four replicated sites in Argentina.
3	 Percent dry weight of sample except for moisture.
4	 Nontransgenic control.
5	 Commercial hybrids planted at each trial site. The commercial hybrids for Argentina also included six hybrids grown in the E.U. during 1999.
6	 Tolerance interval is specified to contain 99% of the commercial line population; negative limits are set to zero.
7	 Range for nontransgenic control hybrids planted in Monsanto Company field trials conducted between 1993 and 1995.
8	 Range denotes the lowest and highest individual value across sites for each line.
9	 ADF = acid detergent fiber; NDF = neutral detergent fiber.



23

Table III.4.	 Fatty acid composition of grain from corn event MON863 (George et al., 2004).

1999 U.S. Trials1 1999 Argentina Trials2

Fatty Acid3
MON863

Mean
(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

MON863
Mean

(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

Literature 
Range

Historical 
Range7

Arachidic (20:0) 0.41
(0.39 - 0.44)

0.40
(0.39 - 0.42) 0.30, 0.51 0.34

(0.32 - 0.37)
0.35

(0.32 - 0.39) 0.16, 0.60 0.1 - 2 0.3 - 0.5

Behenic (22:0) 0.18
(0.17 - 0.21)

0.18
(0.15 - 0.21) 0.055, 0.30 0.15

(0.073 - 0.18)
0.15

(0.086 - 0.17) 0.054, 0.28 Not reported 0.1 - 0.3

Eicosenoic (20.1) 0.30
(0.28 - 0.35)

0.30
(0.28 - 0.35) 0.18, 0.42 0.249

(0.22 - 0.27)
0.25

(0.24 - 0.27) 0.19, 0.39 Not reported 0.2 - 0.3

Linoleic (18:2) 62.23
(60.02 - 63.21)

62.47
(61.55 - 63.60) 50.21, 70.86 63.999

(62.14 - 65.09)
62.58

(61.41 - 63.63) 49.72, 69.67 35 - 70 55.9 - 66.1

Linolenic (18:3) 1.20
(1.13 - 1.29)

1.24
(1.09 - 1.45) 0.75, 1.51 1.17

(1.12 - 1.20)
1.19

(1.15 - 1.23) 0.76, 1.58 0.8 - 2 0.8 - 1.1

Oleic (18:1) 22.00
(20.97 - 23.55)

21.87
(21.00 - 22.53) 13.28, 36.31 21.53

(20.68 - 22.45)
22.03

(21.20 - 22.92) 18.41, 31.88 20 - 46 20.6 - 27.5

Palmitic (16:0) 12.01
(11.61 - 12.56)

11.88
(11.66 - 12.20) 7.74, 13.87 10.709

(9.86 - 11.47)
11.68

(11.35 - 12.06) 5.63, 17.42 7 - 19 9.9 - 12.0

Stearic (18:0) 1.66
(1.40 - 1.86)

1.66
(1.33 - 1.81) 1.04, 2.68 1.889

(1.67 - 2.34)
1.76

(1.64 - 1.91) 0.80, 2.44 1 - 3 1.4 - 2.2

1	 Data from four replicated U.S. sites.
2	 Data from four replicated sites in Argentina.
3	 Value of fatty acids expressed as % of total fatty acid, except for palmitic acid (16:0), which is expressed as % of triglyceride fatty acids. The method included the analysis 

of the following fatty acids, which were not detected in the majority of samples analyzed:  caprylic acid (8:0), capric acid (10:0), lauric acid (12:0), myristic acid (14:0), 
myristoleic acid (14:1), pentadecanoic acid (15:0), pentadecenoic acid (15:1), palmitoleic acid (16:1), heptadecanoic acid (17:0), heptadecenoic acid (17:1), γ-linolenic 
acid (18:3), eicosadienoic acid (20:2), eicosatrienoic acid (20:3), and arachidonic acid (20:4).

4	 Nontransgenic control.
5	 Commercial hybrids planted at each trial site. The commercial hybrids for Argentina also included six hybrids grown in the E.U. during 1999.
6	 Tolerance interval is specified to contain 99% of the commercial line population; negative limits are set to zero.
7	 Range for control hybrids planted in Monsanto Company field trials conducted between 1993 and 1995; values are expressed as % of total fatty acids
8	 Range denotes the lowest and highest individual value across sites. 
9	 Statistically and significantly different from the control at the 5% level (p<0.05).
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Table III.5.	 Phytic acid, trypsin inhibitor, vitamin E, thiamin, riboflavin, folic acid, and secondary metabolite content of grain from corn event MON863 
(George et al., 2004).

1999 U.S. Trials1 1999 Argentina Trials2

Component
MON863

Mean
(Range)7

Control3

Mean
(Range)7

Comm. 
Hybrids4 
Tolerance 
Interval5

MON863
Mean

(Range)7

Control3

Mean
(Range)7

Comm. 
Hybrids4 
Tolerance 
Interval5

Literature 
Range

Historical 
Range6

Phytic acid
(% dw)

1.118

(0.92 - 1.28)
1.23

(1.01 - 1.37) 0.39, 1.33 0.768

(0.61 - 1.05)
0.60

(0.42 - 0.76) 0.36, 0.97 to 0.9% Not available

Trypsin inhibitor 
(TIU/mg dw)

2.30
(0.56 - 3.10)

2.48
(1.91 - 3.45) 0, 4.25 3.82

(2.89 - 4.76)
3.83

(2.19 - 5.05) 0, 6.98 Not available Not available

Folic acid 
(µg/g dw) Not available Not available Not available 0.71

(0.48 - 1.02)
0.68

(0.59 - 0.75) Not available Not available Not available

Thiamin 
(mg/100 g dw) Not available Not available Not available 0.28

(0.21 - 0.41)
0.27

(0.23 - 0.33) Not available 0.3 - 0.86 Not available

Riboflavin 
(µg/g dw) Not available Not available Not available 1.35

(0.93 - 1.76)
1.27

(0.91 - 1.74) Not available 0.25 - 5.6 Not available

Vitamin E 
(mg/g dw)

0.0118

(0.0062 - 0.014)
0.013

(0.0088 - 0.016) 0, 0.019 0.0089
(0.0070 - 0.014)

0.0080
(0.0060 - 0.011) 0, 0.028 0.017 - 0.047 0.008 - 0.015

Ferulic acid 
(% dw) Not available Not available Not available 0.24

(0.20 - 0.40)
0.23

(0.19 - 0.27) 0.17, 0.28 Not available 0.17 - 0.27

Inositol 
(µg/g dw) Not available Not available Not available 1564.01

(1355.93 - 1820.25)
1494.18

(1244.34 - 1704.55) Not available Not available Not available

p-Coumaric acid 
(% dw) Not available Not available Not available 0.023

(0.016 - 0.047)
0.020

(0.016 - 0.026) 0.0022, 0.037 Not available 0.011 - 0.030

Raffinose 
(% dw) Not available Not available Not available 0.12

(0.10 - 0.15)
0.11

(0.091 - 0.13) 0, 0.35 0.028 - 0.0748 0.053 - 0.16

1	 Data from four replicated U.S. sites.
2	 Data from four replicated sites in Argentina.
3	 Nontransgenic control.
4	 Commercial hybrids planted at each trial site. The commercial hybrids for Argentina also included six hybrids grown in the E.U. during 1999.
5	 Tolerance interval is specified to contain 99% of the commercial line population; negative limits are set to zero. 
6	 Range for control hybrids planted in Monsanto Company field trials conducted between 1993 and 1995.
7	 Range denotes the lowest and highest individual value across sites for each hybrid.
8	 Statistically and significantly different from the control at the 5% level (p<0.05).
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Table III.6.	 Amino acid composition of grain from corn event MON863 (George et al., 2004).

1999 U.S. Trials1 1999 Argentina Trials2

Amino Acid3
MON863

Mean
(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

MON863
Mean

(Range)8

Control4

Mean
(Range)8

Comm. 
Hybrids5 
Tolerance 
Interval6

Literature 
Range

Historical 
Range7

Alanine 7.74
(7.65 - 7.85)

7.79
(7.46 - 7.98) 6.94, 8.46 7.74

(7.47 - 7.98)
7.84

(7.46 - 8.06) 7.09, 8.31 6.4 - 9.9 7.2 - 8.8

Arginine 4.439

(4.21 - 4.68)
4.33

(4.09 - 4.63) 3.38, 5.22 4.24
(3.14 - 4.87)

4.24
(3.49 - 5.33) 3.00, 5.75 2.9 - 5.9 3.5 - 5.0

Aspartic acid 6.51
(6.38 - 6.72)

6.45
(6.30 - 6.67) 5.54, 7.65 6.71

(6.25 - 7.22)
6.60

(6.30 - 6.99) 5.60, 7.68 5.8 - 7.2 6.3 - 7.5

Cysteine/Cystine 2.209

(1.98 - 2.40)
2.09

(1.99 - 2.29) 1.59, 2.65 2.22
(2.11 - 2.33)

2.20
(1.98 - 2.30) 1.31, 3.02 1.2 - 1.6 1.8 - 2.7

Glutamic acid 19.39
(18.99 - 19.91)

19.56
(18.97 - 20.26) 17.55, 21.25 18.97

(18.36 - 19.35)
19.21

(18.61 - 19.77) 15.91, 22.38 12.4 - 19.6 18.6 - 22.8

Glycine 3.60
(3.45 - 3.74)

3.53
(3.32 - 3.72) 2.81, 4.46 3.78

(3.59 - 4.01)
3.71

(3.58 - 3.89) 2.29, 5.26 2.6 - 4.7 3.2 - 4.2

Histidine 2.84
(2.70 - 2.95)

2.83
(2.72 - 2.94) 2.37, 3.35 3.02

(2.85 - 3.19)
2.99

(2.79 - 3.21) 2.22, 3.71 2.0 - 2.8 2.8 - 3.4

Isoleucine 3.67
(3.45 - 3.89)

3.74
(3.61 - 3.87) 3.20, 4.17 3.73

(3.54 - 3.91)
3.71

(3.55 - 3.88) 3.18, 4.13 2.6 - 4.0 3.2 - 4.3

Leucine 13.369

(12.88 - 13.65)
13.65

(13.27 - 14.17) 11.30, 15.63 12.90
(12.14 - 13.35)

12.99
(12.59 - 13.44) 9.76, 16.17 7.8 - 15.2 12.0 - 15.8

Lysine 2.92
(2.65 - 3.26)

2.88
(2.67 - 3.08) 1.87, 3.89 3.01

(2.69 - 3.40)
2.93

(2.68 - 3.21) 1.79, 4.28 2.0 - 3.8 2.6 - 3.5

Methionine 2.28
(1.89 - 2.49)

2.24
(1.96 - 2.58) 1.34, 2.74 2.01

(1.77 - 2.17)
2.08

(1.89 - 2.38) 1.03, 3.01 1.0 - 2.1 1.3 - 2.6

Phenylalanine 4.99
(4.93 - 5.06)

5.04
(4.95 - 5.23) 4.53, 5.66 5.03

(4.88 - 5.18)
5.02

(4.92 - 5.15) 4.25, 5.75 2.9 - 5.7 4.9 - 6.1

Proline 8.73
(8.30 - 9.21)

8.78
(8.60 - 9.05) 8.04, 10.35 9.359

(8.86 - 9.82)
9.68

(9.17 - 10.56) 8.47, 10.48 6.6 - 10.3 8.7 - 10.1

Serine 4.70
(3.93 - 5.09)

4.67
(4.20 - 4.94) 3.76, 5.69 4.93

(4.62 - 5.26)
4.92

(4.56 - 5.29) 4.11, 5.52 4.2 - 5.5 4.9 - 6.0

Threonine 3.41
(3.16 - 3.60)

3.36
(3.16 - 3.49) 2.93, 3.83 3.32

(2.76 - 3.60)
3.31

(2.87 - 3.61) 2.87, 3.99 2.9 - 3.9 3.3 - 4.2

Tryptophan 0.66
(0.60 - 0.83)

0.65
(0.60 - 0.68) 0.37, 0.90 0.56

(0.51 - 0.61)
0.58

(0.51 - 0.66) 0.23, 0.94 0.5 - 1.2 0.4 - 1.0

Tyrosine 3.63
(3.33 - 3.77)

3.48
(2.71 - 3.82) 2.15, 4.65 3.45

(2.81 - 3.66)
3.00

(1.93 - 3.66) 2.38, 4.19 2.9 - 4.7 3.7 - 4.3

Valine 4.94
(4.71 - 5.13)

4.94
(4.64 - 5.12) 4.15, 5.63 5.03

(4.82 - 5.19)
4.98

(4.77 - 5.16) 4.49, 5.47 2.1 - 5.2 4.2 - 5.3

1	 Data from four replicated U.S. sites.
2	 Data from four replicated sites in Argentina.
3	 Values are percent of total protein.
4	 Nontransgenic control.
5	 Commercial hybrids planted at each trial site. The commercial hybrids for Argentina also included six hybrids grown in the E.U. during 1999.
6	 Tolerance interval is specified to contain 99% of the commercial line population; negative limits are set to zero.
7	 Range for nontransgenic control hybrids planted in Monsanto Company field trials conducted between 1993 and 1995; values are percent of total protein.
8	 Range denotes the lowest and highest individual value across sites for each line.
9	 Statistically and significantly different from the control at the 5% level (p<0.05).
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Table III.7.	 Combined site statistical comparison of fiber and proximate content in MON863 corn and control grain (FSANZ, 2003).

Constituent
MON8631

Mean ± S.E.2

(Range)

Control1

Mean ± S.E.
(Range)

Difference (MON863 minus Control) Comm. Range4

(95% T.I.5

Lower, Upper)

Literature
Range

Historical
Range6Mean ± S.E.

(Range) p-Value 95% C.I.3

(Lower, Upper)

Ash
(% DW)

1.35 ± 0.12
(0.84 – 1.71)

1.41 ± 0.12
(0.89 – 1.89)

-0.064 ± 0.047
(-0.45 – 0.31) 0.196 -0.17, 0.037 0.62 – 1.53

(0.26, 2.06) 1.1 – 3.9 1.2 – 1.8

Carbohydrates 
(% DW)

83.30 ± 0.56
(81.83 – 85.00)

82.76 ± 0.56
(80.70 – 84.80)

0.54 ± 0.27
(-0.78 – 2.43) 0.138 -0.32, 1.40 82.51 – 87.84

(78.97, 90.36) NA 81.7 – 86.3

ADF
(% DW)

4.45 ± 0.15
(3.49 – 5.23)

4.50 ± 0.15
(3.62 – 5.89)

-0.050 ± 0.18
(-1.77 – 1.16) 0.778 -0.43, 0.33 3.65 – 6.09

(1.98, 6.62) 3.3 – 4.3 3.1 – 5.3

NDF
(% DW)

11.64 ± 0.54
(9.21 – 13.47)

12.02 ± 0.54
(10.31 – 15.82)

-0.37 ± 0.61
(-4.32 – 2.30) 0.585 -2.33, 1.58 9.50 – 14.95

(6.51, 16.28) 8.3 – 11.9 9.6 – 15.3

Moisture
(% FW)

10.03 ± 0.50
(8.54 – 11.20)

10.23 ± 0.50
(8.60 – 11.40)

-0.20 ± 0.13
(-0.90 – 0.26) 0.216 -0.61, 0.21 8.75 – 15.70

(5.09, 18.62) 7 – 23 9.4 – 15.8

Total fat
(% DW)

3.77 ± 0.20
(3.00 – 4.56)

3.64 ± 0.20
(3.02 – 4.29)

0.13 ± 0.18
(-0.77 – 1.02) 0.520 -0.44, 0.70 2.18 – 3.86

(1.68, 4.64)
3.1 – 5.7,
2.9 – 6.1 2.4 – 4.2

Protein
(% DW)

11.60 ± 0.48
(10.43 – 12.82)

12.19 ± 0.48
(10.45 – 13.80)

-0.59 ± 0.22
(-1.52 – 0.12) 0.071 -1.28, 0.097 7.95 – 13.83

(5.47, 16.57)
6.0 – 12.0,
9.7 – 16.1 9.0 – 13.6

1	 MON863 and Control mean values are for 16 replicates collected from 4 sites.
2	 S.E. = standard error of the mean
3	 C.I. = confidence interval
4	 Comm. Range = the range of sample values for commercial hybrids grown at the same field sites
5	 T.I. = tolerance interval, specified to contain 95% of the commercial line population
6	 Historical range for control lines refers to data collected on Monsanto field trials conducted between 1993 and 1995.
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Table III.8.	 Combined site statistical comparison of amino acid levels in MON863 and control grain (FSANZ, 2003).

Constituent
MON8631

Mean ± S.E.2

(Range)

Control1

Mean ± S.E.
(Range)

Difference (MON863 minus Control) Comm. Range4

(95% T.I.5

Lower, Upper)

Literature
Range

Historical
Range6Mean ± S.E.

(Range) p-Value 95% C.I.3

(Lower, Upper)

Alanine 7.74 ± 0.032
(7.65 – 7.85)

7.79 ± 0.032
(7.46 – 7.98)

-0.045 ± 0.031
(-0.23 – 0.24) 0.247 -0.14, 0.055 7.30 – 8.06

(6.94, 8.46) 6.4 – 9.9 7.2 – 8.8

Arginine 4.43 ± 0.062
(4.21 – 4.68)

4.33 ± 0.062
(4.09 – 4.63)

0.10 ± 0.044
(-0.16 – 0.51) 0.030 -0.0099, 0.19 3.86 – 4.83

(3.38, 5.22) 2.9 – 5.9 3.5 – 5.0

Aspartic acid 6.51 ± 0.053
(6.38 – 6.72)

6.45 ± 0.053
(6.30 – 6.67)

0.061 ± 0.021
(-0.11 – 0.23) 0.064 -0.0070, 0.13 6.05 – 7.14

(5.54, 7.65) 5.8 – 7.2 6.3 – 7.5

Cystine 2.20 ± 0.027
(1.98 – 2.40)

2.09 ± 0.027
(1.99 – 2.29)

0.11 ± 0.029
(-0.15 – 0.39) <0.001 0.054, 0.17 1.84 – 2.35

(1.59, 2.65) 1.2 – 1.6 1.8 – 2.7

Glutamic acid 19.39 ± 0.16
(18.99 – 19.91)

19.56 ± 0.16
(18.97 – 20.26)

-0.17 ± 0.090
(-0.76 – 0.24) 0.157 -0.46, 0.12 18.31 ± 20.25

(17.55, 21.25) 12.4 – 19.6 18.6 – 22.8

Glycine 3.60 ± 0.048
(3.45 – 3.74)

3.53 ± 0.048
(3.32 – 3.72)

0.072 ± 0.030
(-0.075 – 0.31) 0.100 -0.025, 0.17 3.20 ± 4.13

(2.81, 4.46) 2.6 – 4.7 3.2 – 4.2

Histidine 2.84 ± 0.032
(2.70 – 2.95)

2.83 ± 0.032
(2.72 – 2.94)

0.011 ± 0.023
(-0.082 – 0.24) 0.665 -0.063, 0.085 2.60 – 3.20

(2.37, 3.35) 2.0 – 2.8 2.8 – 3.4

Isoleucine 3.67 ± 0.033
(3.45 – 3.89)

3.74 ± 0.033
(3.61 – 3.87)

-0.064 ± 0.033
(-0.33 – 0.15) 0.072 -0.13, 0.0065 3.47 – 3.94

(3.20, 4.17) 2.6 – 4.0 3.2 – 4.3

Leucine 13.36 ± 0.081
(12.88 – 13.65)

13.65 ± 0.081
(13.27 – 14.17)

-0.29 ± 0.084
(-0.75 – 0.13) 0.039 -0.56, -0.026 11.94 – 14.47

(11.30, 15.63) 7.8 – 15.2 12.0 – 15.8

Lysine 2.92 ± 0.061
(2.65 – 3.26)

2.88 ± 0.061
(2.67 – 3.08)

0.042 ± 0.036
(-0.19 – 0.32) 0.328 -0.073, 0.16 2.40 – 3.52

(1.87, 3.89) 2.0 – 3.8 2.6 – 3.5

Methionine 2.28 ± 0.060
(1.89 – 2.49)

2.24 ± 0.060
(1.96 – 2.58)

0.034 ± 0.035
(-0.20 – 0.25) 0.348 -0.040, 0.11 1.61 – 2.29

(1.34, 2.74) 1.0 – 2.1 1.3 – 2.6

Phenylalanine 4.99 ± 0.015
(4.93 – 5.06)

5.04 ± 0.015
(4.95 – 5.23)

-0.048 ± 0.017
(-0.17 – 0.041) 0.052 -0.096, 0.0010 4.80 – 5.35

(4.53, 5.66) 2.9 – 5.7 4.9 – 6.1

Proline 8.73 ± 0.054
(8.30 – 9.21)

8.78 ± 0.054
(8.60 – 9.05)

-0.052 ± 0.046
(-0.32 – 0.38) 0.267 -0.15, 0.045 8.57 – 9.61

(8.04, 10.35) 6.6 – 10.3 8.7 – 10.1

Serine 4.70 ± 0.11
(3.93 – 5.09)

4.67 ± 0.11
(4.20 – 4.94)

0.031 ± 0.094
(-0.77 – 0.89) 0.743 -0.17, 0.23 4.24 – 4.99

(3.76, 5.69) 4.2 – 5.5 4.9 – 6.0

Threonine 3.41 ± 0.035
(3.16 – 3.60)

3.36 ± 0.035
(3.16 – 3.49)

0.049 ± 0.024
(-0.15 – 0.23) 0.056 -0.0016, 0.099 3.19 – 3.59

(2.93, 3.83) 2.9 – 3.9 3.3 – 4.2

Tryptophan 0.66 ± 0.015
(0.60 – 0.83)

0.65 ± 0.015
(0.60 – 0.68)

0.013 ± 0.012
(-0.043 – 0.17) 0.295 -0.013, 0.039 0.54 – 0.82

(0.37, 0.90) 0.5 – 1.2 0.4 – 1.0

Tyrosine 3.63 ± 0.057
(3.33 – 3.77)

3.48 ± 0.057
(2.71 – 3.82)

0.15 ± 0.078
(-0.14 – 0.92) 0.073 -0.016, 0.32 2.60 – 3.73

(2.15, 4.65) 2.9 – 4.7 3.7 – 4.3

Valine 4.94 ± 0.043
(4.71 – 5.13)

4.94 ± 0.043
(4.64 – 5.12)

-0.0091 ± 0.043
(-0.36 – 0.50) 0.833 -0.097, 0.079 4.49 – 5.30

(4.15, 5.63) 2.1 – 5.2 4.2 – 5.3

1	 MON863 and Control mean values are for 16 replicates collected from 4 sites.
2	 S.E. = standard error of the mean
3	 C.I. = confidence interval
4	 Comm. Range = the range of sample values for commercial hybrids grown at the same field sites
5	 T.I. = tolerance interval, specified to contain 95% of the commercial line population
6	 Historical range for control lines refers to data collected on Monsanto field trials conducted between 1993 and 1995.
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Table III.9.	 Combined site statistical comparison of fatty acid levels in MON863 and control grain (FSANZ, 2003).

Constituent
MON8631

Mean ± S.E.2

(Range)

Control1

Mean ± S.E.
(Range)

Difference (MON863 minus Control) Comm. Range4

(95% T.I.5

Lower, Upper)

Literature
Range

Historical
Range6Mean ± S.E.

(Range) p-Value 95% C.I.3

(Lower, Upper)

16:0 palmitic 12.01 ± 0.11
(11.61 – 12.56)

11.88 ± 0.11
(11.66 – 12.20)

0.12 ± 0.11
(-0.21 – 0.79) 0.337 -0.22, 0.47 9.07 – 12.14

(7.74, 13.87) 7 – 19 9.9 – 12.0

18:0 stearic 1.66 ± 0.083
(1.40 – 1.86)

1.66 ± 0.083
(1.33 – 1.81)

0.0044 ± 0.013
(-0.087 – 0.078) 0.738 -0.023, 0.032 1.44 – 2.40

(1.04, 2.68) 1 – 3 1.4 – 2.2

18:1 oleic 22.00 ± 0.36
(20.97 – 23.55)

21.87 ± 0.36
(21.00 – 22.53)

0.13 ± 0.12
(-0.16 – 1.05) 0.365 -0.26, 0.52 21.26 – 32.06

(13.28, 36.31) 20 – 46 20.6 – 27.5

18:2 linoleic 62.23 ± 0.38
(60.02 – 63.21)

62.47 ± 0.38
(61.55 – 63.60)

-0.23 ± 0.18
(-1.83 – 0.32) 0.293 -0.81, 0.35 54.15 – 63.64

(50.21, 70.86) 35 – 70 55.9 – 66.1

18:3 linolenic 1.20 ± 0.020
(1.13 – 1.29)

1.24 ± 0.020
(1.09 – 1.45)

-0.037 ± 0.021
(-0.30 – 0.071) 0.079 -0.080, 0.0047 0.97 – 1.36

(0.75, 1.51) 0.8 – 2 0.8 – 1.1

20:0 arachidic 0.41 ± 0.0068
(0.39 – 0.44)

0.40 ± 0.0068
(0.39 – 0.42)

0.0052 ± 0.0062
(-0.017 – 0.027) 0.460 -0.014, 0.025 0.35 – 0.45

(0.30, 0.51) 0.1 – 2 0.3 – 0.5

20:1 eicosenoic 0.30 ± 0.011
(0.28 – 0.35)

0.30 ± 0.011
(0.28 – 0.35)

0.0011 ± 0.0037
(-0.039 – 0.040) 0.783 -0.011, 0.013 0.25 – 0.39

(0.18, 0.42) NA 0.2 – 0.3

22:0 behenic 0.18 ± 0.0068
(0.17 – 0.21)

0.18 ± 0.0068
(0.15 – 0.21)

0.0043 ± 0.0056
(-0.023 – 0.029) 0.498 -0.013, 0.222 0.089 – 0.21

(0.055, 0.30) NA 0.1 – 0.3

1	 MON863 and Control mean values are for 16 replicates collected from 4 sites.
2	 S.E. = standard error of the mean
3	 C.I. = confidence interval
4	 Comm. Range = the range of sample values for commercial hybrids grown at the same field sites
5	 T.I. = tolerance interval, specified to contain 95% of the commercial line population
6	 Historical range for control lines refers to data collected on Monsanto field trials conducted between 1993 and 1995.
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Table III.10.	Combined site statistical comparison of mineral, vitamin, and anti-nutritive levels in MON863 and control grain (FSANZ, 2003).

Constituent
MON8631

Mean ± S.E.2

(Range)

Control1

Mean ± S.E.
(Range)

Difference (MON863 minus Control) Comm. Range4

(95% T.I.5

Lower, Upper)

Literature
Range

Historical
Range6Mean ± S.E.

(Range) p-Value 95% C.I.3

(Lower, Upper)

Calcium
(% DW)

0.0052 ± 0.00041
(0.0041 – 0.0064)

0.0053 ± 0.00041
(0.0043 – 0.0089)

-0.00013 ± 0.00020
(-0.0027 – 0.00081) 0.538 -0.00056, 0.00031 0.0039 – 0.0060

(0.0022, 0.0073) 0.01 – 0.1 0.003 – 0.006

Copper
(mg/kg DW)

2.26 ± 0.17
(1.72 – 3.18)

2.19 ± 0.17
(1.60 – 2.88)

0.078 ± 0.076
(-0.58 – 1.10) 0.315 -0.078, 0.23 1.03 – 2.15

(0.25, 2.70) 0.9 – 10 NA

Iron
(mg/kg DW)

23.55 ± 1.16
(21.13 – 26.36)

24.18 ± 1.16
(20.57 – 28.16)

-0.63 ± 0.80
(-3.92 – 1.83) 0.490 -3.18, 1.92 16.74 – 28.69

(12.52, 35.06) 1 – 100 NA

Magnesium
(% DW)

0.13 ± 0.0034
(0.12 – 0.14)

0.14 ± 0.0034
(0.12 – 0.16)

-0.0049 ± 0.0024
(-0.018 – 0.0049) 0.135 -0.013, 0.0028 0.091 – 0.14

(0.082, 0.17) 0.09 – 1.0 NA

Manganese
(mg/kg DW)

0.13 ± 0.0034
(0.12 – 0.14)

0.14 ± 0.0034
(0.12 – 0.16)

-0.0049 ± 0.0024
(-0.018 – 0.0049) 0.122 -0.84, 0.17 0.091 – 0.14

(0.082, 0.17) 0.7 – 54 NA

Phosphorus
(% DW)

0.4 ± 0.0068
(0.37 – 0.45)

0.42 ± 0.0068
(0.39 – 0.46)

-0.022 ± 0.0094
(-0.070 – 0.019) 0.065 -0.045, 0.0020 0.27 – 0.41

(0.21, 0.47) 0.26 – 0.75 0.288 – 0.363

Potassium
(% DW)

0.43 ± 0.0088
(0.40 – 0.48)

0.44 ± 0.0088
(0.39 – 0.48)

-0.0074 ± 0.0087
(-0.056 – 0.037) 0.457 -0.035, 0.020 0.33 – 0.43

(0.28, 0.48) 0.32 – 0.72 NA

Zinc
(mg/kg DW)

22.15 ± 1.44
(17.95 – 25.25)

23.68 ± 1.44
(18.77 – 28.14)

-1.53 ± 0.69
(-4.60 – 0.90) 0.112 -3.73, 0.66 12.84 – 31.22

(6.31, 37.95) 12 – 30 NA

Vitamin E
(mg/g DW)

0.011 ± 0.0012
(0.0062 – 0.014)

0.013 ± 0.0012
(0.0088 – 0.016)

-0.0015 ± 0.00047
(-0.0077 – 0.00090) 0.002 -0.0025, -0.00058 0.0041 – 0.014

(0, 0.019) 0.017 – 0.047 0.008 – 0.015

Phytic Acid
(% DW)

1.11 ± 0.033
(0.92 – 1.28)

1.23 ± 0.033
(1.01 – 1.37)

-0.12 ± 0.034
(-0.31 – 0.19) 0.001 -0.91, -0.050 0.73 – 1.17

(0.39, 1.33) To 0.9% NA

Trypsin 
Inhibitor
(TIU/mg DW)

2.30 ± 0.16
(0.56 – 3.10)

2.48 ± 0.16
(1.91 – 3.45)

-0.18 ± 0.16
(-1.70 – 0.63) 0.288 -0.53, 0.17 0.58 – 3.05

(0, 4.25) NA NA

1	 MON863 and Control mean values are for 16 replicates collected from 4 sites.
2	 S.E. = standard error of the mean
3	 C.I. = confidence interval
4	 Comm. Range = the range of sample values for commercial hybrids grown at the same field sites
5	 T.I. = tolerance interval, specified to contain 95% of the commercial line population
6	 Historical range for control lines refers to data collected on Monsanto field trials conducted between 1993 and 1995.
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Table III.11.	Combined site statistical comparison of fiber and proximate content in MON863 corn and control forage (FSANZ, 2003).

Constituent
MON8631

Mean ± S.E.2

(Range)

Control1

Mean ± S.E.
(Range)

Difference (MON863 minus Control) Comm. Range4

(95% T.I.5

Lower, Upper)

Literature
RangeMean ± S.E.

(Range) p-Value 95% C.I.3

(Lower, Upper)

Ash (% DW) 4.73 ± 0.22
(3.62 – 5.65)

5.00 ± 0.22
(3.81 – 6.27)

-0.27 ± 0.16
(-1.29 – 1.09) 0.106 -0.61, 0.066 3.74 – 5.02

(3.04, 5.58) 2.9 – 5.1

Carbohydrates (% DW) 84.24 ± 0.53
(82.29 – 86.32)

84.32 ± 0.53
(80.78 – 87.21)

-0.084 ± 0.43
(-2.70 – 2.52) 0.859 -1.47, 1.30 82.59 – 87.10

(81.22, 88.97) 84.6 – 89.1

ADF (% DW) 28.67 ± 1.66
(21.74 – 43.30)

28.41 ± 1.66
(23.39 – 32.08)

0.26 ± 2.06
(-7.90 – 14.03) 0.907 -6.29, 6.81 19.78 – 39.00

(9.33, 45.44 21.4 – 29.2

NDF (% DW) 43.25 ± 1.26
(37.97 – 49.67)

42.94 ± 1.26
(37.32 – 51.85)

0.31 ± 1.25
(-10.81 – 12.34) 0.807 -2.25, 2.87 30.30 – 47.75

(22.71, 56.02) 39.9 – 46.6

Moisture (% FW) 71.09 ± 0.46
(69.30 – 73.10)

71.68 ± 0.46
(69.80 – 74.50)

-0.58 ± 0.43
(-3.70 – 2.90) 0.269 -1.95, 0.79 67.00 – 74.10

(62.70, 77.69) 68.7 – 73.5

Total fat (% DW) 2.40 ± 0.23
(0.92 – 3.16)

2.35 ± 0.23
(1.30 – 3.33)

0.053 ± 0.15
(-0.91 – 1.14) 0.721 -0.26, 0.36 1.39 – 2.62

(1.03, 3.24) 1.4 – 2.1

Protein (% DW) 8.62 ± 0.53
(6.91 – 10.40)

8.33 ± 0.53
5.99 – 10.55)

0.30 ± 0.37
(-2.54 – 2.42) 0.478 -0.87, 1.47 6.45 – 10.14

(4.94, 11.97) 4.8 – 8.4

1	 MON863 and Control mean values are for 16 replicates collected from 4 sites.
2	 S.E. = standard error of the mean
3	 C.I. = confidence interval
4	 Comm. Range = the range of sample values for commercial hybrids grown at the same field sites
5	 T.I. = tolerance interval, specified to contain 95% of the commercial line population
6	 Historical range for control lines refers to data collected on Monsanto field trials conducted between 1993 and 1995.

Table III.12.	Summary of the statistical differences for the comparison of MON88017 grain to control corn, grown at three different trial sites (FSANZ, 
2006; USDA, 2004).

Tissue/Site/Component (Units) Mean
MON8807

Mean
Control

Mean Difference
(% of Control 

Value)

Significance
(p-Value)

MON88017
(Range)

99% Tolerance 
Interval

Iowa

16:0 palmitic (% total fatty acids) 10.16 12.94 -21.50 0.029 (10.11 – 10.23) [6.51, 16.50]

18:2 linoleic (% total fatty acids) 63.25 60.41 4.70 0.017 (62.73 – 63.72) [41.22, 74.09]

18:3 linolenic (% total fatty acids) 1.25 1.57 -20.26 0.036 (1.24 – 1.26) [0.42, 1.95]

Methionine (% total amino acids) 2.20 2.16 -6.39 <0.001 (1.96 – 2.05) [1.37, 2.60]

Moisture (% fresh weight) 9.38 9.93 -5.54 0.034 (9.03 – 9.70) [4.67, 17.56]

Vitamin B1 (mg/kg dry weight) 2.54 3.07 -17.37 <0.001 (2.42 – 2.65) [1.96, 4.38]

Illinois

18:1 oleic (% total fatty acids) 22.53 23.29 -3.26 <0.001 (22.50 – 22.56) [9.25, 44.14]

18:2 linoleic (% total fatty acids) 63.11 62.15 1.55 0.003 (62.84 – 63.29) [41.22, 74.09]

Niacin (mg/kg dry weight) 21.10 22.52 -6.30 0.014 (20.39 – 21.52) [3.19, 34.49]

Vitamin B1 (mg/kg dry weight) 2.30 3.10 -25.63 <0.001 (2.30 – 2.30) [1.96, 4.38]

Nebraska

Copper (mg/kg dry weight) 1.57 2.21 -28.80 0.023 (1.48 – 1.68) [0.17, 3.00]

Serine (% total amino acids) 4.80 4.97 -3.37 0.042 (4.80 – 4.81) [4.60, 5.43]

Vitamin B1 2.58 3.56 -27.53 <0.001 (2.47 – 2.69) [1.96, 4.38]

All Sites Combined

18:2 linoleic (% total fatty acids) 62.85 61.52 2.17 0.038 (61.86 – 63.72) [41.22, 74.09]

20:0 arachidic (% total fatty acids) 0.37 0.38 -2.24 0.012 (0.35 – 0.39) [0.31, 0.49]

Vitamin B1 (mg/kg dry weight) 2.47 3.24 -23.72 <0.001 (2.30 – 2.69) [1.96, 4.38]
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Table III.13.	Comparison of proximates, fiber, and mineral content in forage from MON88017 and conventional corn for combined field sites (USDA, 
2004).

Component (Units)1
MON88017
Mean ± S.E.

(Range)

Control
Mean ± S.E.

(Range)

Difference (MON 88017 Minus Control) Commercial
(Range)

[99% T.I.]2
Mean ± S.E.

(Range)
95% C.I.

(Lower, Upper) p-Value

Ash (% dwt) 3.99 ± 0.24
(3.30 - 5.53)

4.04 ± 0.24
(3.59 - 4.67)

-0.051 ± 0.28
(-1.37 – 1.55) -0.74,0.64 0.861 (2.62 - 6.78)

[0.72,7.42]

Carbohydrates (% dwt) 86.19 ± 0.62
(83.54 - 87.88)

86.48 ± 0.62
(84.43 - 87.71)

-0.29 ± 0.40
(-2.58 – 1.73) -1.11,0.54 0.478 (81.86 - 89.90)

[78.70,93.43]

Fat, total (% dwt) 1.61 ± 0.29
(0.80 - 3.13)

1.65 ± 0.29
(0.83 - 2.97)

-0.039 ± 0.25
(-1.47 – 1.99) -0.56,0.48 0.878 (0.69 - 2.92)

[0.80,2.95]

Moisture (% fwt) 70.86 ± 0.66
(68.50 - 72.70)

70.66 ± 0.66
(69.10 - 72.70)

0.20 ± 0.39
(-1.40 – 1.90) -0.61,1.01 0.615 (65.20 - 78.60)

[59.37,80.83]

Protein (% dwt) 8.20 ± 0.31
(7.44 - 8.97)

7.82 ± 0.31
(6.79 - 8.54)

0.38 ± 0.25
(-0.99 – 1.65) -0.13,0.88 0.137 (6.31 - 9.96)

[4.17,11.81]

ADF (% dwt) 26.54 ± 1.25
(24.29 - 29.97)

25.45 ± 1.25
(23.34 - 28.13)

1.10 ± 1.76
(-2.58 – 4.08) -2.97,5.16 0.549 (19.16 - 35.55)

[13.95,38.96]

NDF (% dwt) 37.34 ± 1.22
(33.44 - 45.05)

38.33 ± 1.22
(35.86 - 41.18)

-0.99 ± 1.42
(-4.63 – 6.97) -3.90,1.91 0.490 (30.27 - 57.93)

[23.80,54.73]

Calcium (% dwt) 0.22 ± 0.014
(0.19 - 0.26)

0.23 ± 0.014
(0.18 - 0.31)

-0.0092 ± 0.014
(-0.054 – 0.024) -0.044,0.026 0.542 (0.13 - 0.32)

[0.11,0.32]

Phosphorus (% dwt) 0.25 ± 0.011
(0.21 - 0.30)

0.25 ± 0.011
(0.20 - 0.30)

0.0017 ± 0.013
(-0.060 - 0.079) -0.029,0.032 0.899 (0.16 - 0.31)

[0.095,0.38]

1	 dwt = dry weight; ADF = acid detergent fiber; NDF = neutral detergent fiber; S.E. = standard error of the mean; C.I. = confidence interval; T.I. = tolerance interval
2	 With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.
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Table III.14.	Comparison of the amino acid content1 in grain from MON88017 and conventional corn for combined field sites (FSANZ, 2006; USDA, 
2004).

Component
MON88017
Mean ± S.E.2

(Range)

Control
Mean ± S.E.

(Range)

Difference (MON 88017 Minus Control) Commercial
(Range)

[99% T.I.]3
Mean ± S.E.

(Range)
95% C.I.

(Lower, Upper) p-Value

Alanine 7.55 ± 0.084
(7.29 - 7.70)

7.55 ± 0.084
(7.34 - 7.79)

-0.0026 ± 0.039
(-0.19 - 0.18) -0.097, 0.092 0.949 (7.24 - 8.16)

[6.66,8.49]

Arginine 4.42 ± 0.11
(4.10 - 4.74)

4.29 ± 0.11
(4.01 - 4.63)

0.13 ± 0.060
(-0.12 - 0.36) -0.013, 0.28 0.066 (3.72 - 5.08)

[3.34,5.67]

Aspartic acid 6.22 ± 0.050
(6.09 - 6.34)

6.25 ± 0.050
(6.04 - 6.45)

-0.032 ± 0.067
(-0.34 - 0.18) -0.20, 0.13 0.648 (6.18 - 6.81)

[5.77,7.16]

Cystine 2.14 ± 0.054
(1.93 - 2.26)

2.15 ± 0.054
(1.93 - 2.30)

-0.013 ± 0.042
(-0.20 - 0.17) -0.098,0.073 0.766 (1.82 - 2.58)

[1.46,2.89]

Glutamic acid 20.40 ± 0.18
(19.80 - 20.87)

20.44 ± 0.18
(19.91 - 20.84)

-0.036 ± 0.086
(-0.52 - 0.48) -0.25, 0.17 0.686 (19.46 - 21.57)

[18.01,22.15]

Glycine 3.45 ± 0.063
(3.32 - 3.62)

3.45 ± 0.063
(3.18 - 3.61)

0.0061 ± 0.031
(-0.081 - 0.19) -0.058, 0.070 0.844 (3.29 - 4.03)

[2.81,4.54]

Histidine 2.99 ± 0.049
(2.90 - 3.10)

2.95 ± 0.049
(2.83 - 3.14)

0.032 ± 0.022
(-0.056 - 0.10) -0.023, 0.087 0.200 (2.50 - 3.12)

[2.16,3.60]

Isoleucine 3.59 ± 0.037
(3.43 - 3.71)

3.57 ± 0.037
(3.45 - 3.76)

0.025 ± 0.044
(-0.15 - 0.25) -0.065, 0.11 0.577 (3.39 - 3.79)

[3.30,3.84]

Leucine 13.28 ± 0.20
(12.69 - 13.62)

13.31 ± 0.20
(12.76 - 14.11)

-0.037 ± 0.098
(-0.69 - 0.56) -0.28, 0.20 0.717 (12.11 - 14.35)

[10.72,15.18]

Lysine 2.69 ± 0.058
(2.42 - 2.87)

2.66 ± 0.058
(2.49 - 2.82)

0.024 ± 0.047
(-0.072 - 0.11) -0.074, 0.12 0.614 (2.44 - 3.27)

[2.06,3.73]

Methionine 1.98 ± 0.059
(1.85 - 2.05)

2.01 ± 0.059
(1.83 - 2.20)

-0.030 ± 0.043
(-0.15 - 0.12) -0.14, 0.076 0.515 (1.70 - 2.47)

[1.37,2.60]

Phenylalanine 5.18 ± 0.059
(4.97 - 5.31)

5.14 ± 0.059
(5.01 - 5.32)

0.035 ± 0.055
(-0.13 - 0.25) -0.10, 0.17 0.545 (4.82 - 5.39)

[4.57,5.71]

Proline 9.39 ± 0.094
(9.02 - 9.69)

9.34 ± 0.094
(8.85 - 9.80)

0.046 ± 0.11
(-0.61 - 0.71) -0.18, 0.27 0.676 (8.35 - 9.72)

[7.60,10.37]

Threonine 3.22 ± 0.040
(3.10 - 3.38)

3.25 ± 0.040
(3.06 - 3.37)

-0.026 ± 0.045
(-0.25 - 0.24) -0.12, 0.067 0.572 (2.96 - 3.55)

[2.89,3.84]

Tryptophan 0.54 ± 0.027
(0.48 - 0.60)

0.55 ± 0.027
(0.41 - 0.68)

-0.0090 ± 0.018
(-0.17 - 0.096) -0.046, 0.028 0.627 (0.44 - 0.83)

[0.36,0.77]

Tyrosine 3.35 ± 0.16
(2.35 - 3.66)

3.43 ± 0.16
(2.58 - 3.66)

-0.079 ± 0.23
(-1.18 - 0.98) -0.61, 0.46 0.743 (2.26 - 3.80)

[2.62,4.26]

Valine 4.79 ± 0.039
(4.60 - 4.92)

4.74 ± 0.039
(4.60 - 4.94)

0.043 ± 0.052
(-0.25 - 0.26) -0.064, 0.15 0.414 (4.44 - 5.04)

[4.22,5.27]

1	 % total amino acids
2	 S.E. = standard error of the mean; C.I. = confidence interval; T.I. = tolerance interval
3	 With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.
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Table III.15.	Comparison of the fatty acid content1 in grain from MON88017 and conventional corn for combined field sites (FSANZ, 2006; USDA, 
2004).

Component
MON88017
Mean ± S.E.2

(Range)

Control
Mean ± S.E.

(Range)

Difference (MON 88017 Minus Control) Commercial
(Range)

[99% T.I.]3
Mean ± S.E.

(Range)
95% C.I.

(Lower, Upper) p-Value

16:0 palmitic (% total FA) 10.24 ± 0.43
(10.07 - 10.52)

11.27 ± 0.43
(10.14 - 14.57)

-1.03 ± 0.60
(-4.35 - 0.36) -2.42, 0.37 0.128 (9.29 - 17.81)

[6.51,16.50]

16:1 pamitoleic (% total FA) 0.18 ± 0.010
(0.16 - 0.21)

0.18 ± 0.010
(0.16 - 0.22)

-0.0030 ± 0.0064
(-0.029 - 0.025) -0.019, 0.013 0.655 (0.054 - 0.21)

[0.0017,0.28]

18:0 stearic (% total FA) 2.01 ± 0.073
(1.80 - 2.19)

2.07 ± 0.073
(1.76 - 2.23)

-0.052 ± 0.046
(-0.28 - 0.25) -0.15, 0.042 0.266 (1.68 - 2.30)

[1.41,2.53]

18:1 oleic (% total FA) 22.74 ± 0.23
(22.20 - 23.53)

22.87 ± 0.23
(21.43 - 23.51)

-0.13 ± 0.24
(-0.94 - 1.13) -0.71, 0.46 0.613 (19.79 - 34.46)

[9.25,44.14]

18:2 linoleic (% total FA) 62.85 ± 0.39
(61.86 - 63.72)

61.52 ± 0.39
(59.10 - 63.18)

1.34 ± 0.53
(-0.64 - 4.19) 0.093, 2.58 0.038 (51.64 - 64.12)

[41.22,74.09]

18:3 linolenic (% total FA) 1.21 ± 0.062
(1.15 - 1.26)

1.32 ± 0.062
(1.19 - 1.77)

-0.11 ± 0.077
(-0.53 - 0.043) -0.30, 0.079 0.205 (0.84 - 1.91)

[0.42,1.95]

20:0 arachidic (% total FA) 0.37 ± 0.010
(0.35 - 0.39)

0.38 ± 0.010
(0.35 - 0.41)

-0.0085 ± 0.0032
(-0.028 - 0.0088) -0.015, -0.0019 0.012 (0.36 - 0.45)

[0.31,0.49]

20:1 eicosenoic (% total FA) 0.24 ± 0.0056
(0.23 - 0.26)

0.25 ± 0.0056
(0.24 - 0.26)

-0.0034 ± 0.0034
(-0.019 - 0.019) -0.010, 0.0036 0.323 (0.24 - 0.36)

[0.18,0.40]

22:0 behenic (% total FA) 0.15 ± 0.0027
(0.14 - 0.16)

0.15 ± 0.0027
(0.14 - 0.17)

-0.0062 ± 0.0038
(-0.018 - 0.014) -0.014, 0.0016 0.116 (0.074 - 0.24)

[0.071,0.25]

1	 5% of total fatty acids
2	 S.E. = standard error of the mean; C.I. = confidence interval; T.I. = tolerance interval
3	 With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

Table III.16.	Comparison of the mineral content in grain from MON88017 and conventional corn for combined field sites (FSANZ, 2006; USDA, 
2004).

Component (Units)1
MON88017
Mean ± S.E.

(Range)

Control
Mean ± S.E.

(Range)

Difference (MON 88017 Minus Control) Commercial
(Range)

[99% T.I.]2
Mean ± S.E.

(Range)
95% C.I.

(Lower, Upper) p-Value

Calcium (% dwt) 0.0054 ± 0.00035
(0.0047 - 0.0060)

0.0058 ± 0.00035
(0.0049 - 0.0069)

-0.00040 ± 0.00025
(-0.0013 - 0.00006) -0.0010, 0.00021 0.159 (0.0032 - 0.0060)

[0.0017,0.0062]

Copper (mg/kg dwt) 1.73 ± 0.086
(1.48 - 2.05)

1.99 ± 0.086
(1.64 - 2.63)

-0.26 ± 0.12
(-0.95 - 0.41) -0.54, 0.016 0.061 (1.01 - 2.34)

[0.17,3.00]

Iron (mg/kg dwt) 21.51 ± 0.59
(20.07 - 22.92)

21.84 ± 0.59
(20.31 - 23.93)

-0.33 ± 0.62
(-2.16 - 2.12) -1.60, 0.93 0.595 (16.42 - 26.03)

[12.60,31.26]

Magnesium (% dwt) 0.14 ± 0.0034
(0.13 - 0.15)

0.14 ± 0.0034
(0.13 - 0.16)

-0.0022 ± 0.0044
(-0.024 - 0.018) -0.011, 0.0069 0.618 (0.10 - 0.14)

[0.088,0.16]

Manganese (mg/kg dwt) 9.72 ± 0.38
(9.01 - 10.76)

9.37 ± 0.38
(7.55 - 10.44)

0.35 ± 0.38
(-0.39 - 1.56) -0.57, 1.27 0.384 (4.96 - 9.81)

[2.45,10.60]

Phosphorus (% dwt) 0.39 ± 0.010
(0.37 - 0.41)

0.39 ± 0.010
(0.36 - 0.43)

-0.0042 ± 0.013
(-0.052 - 0.042) -0.032, 0.023 0.754 (0.28 - 0.41)

[0.24,0.44]

Potassium (% dwt) 0.41 ± 0.012
(0.39 - 0.44)

0.42 ± 0.012
(0.38 - 0.47)

-0.0063 ± 0.012
(-0.052 - 0.037) -0.030, 0.018 0.592 (0.29 - 0.43)

[0.27,0.48]

Zinc (mg/kg dwt) 24.53 ± 0.98
(22.31 - 27.27)

24.92 ± 0.98
(22.02 - 27.18)

-0.39 ± 0.62
(-3.87 - 1.90) -1.67, 0.89 0.534 (17.15 - 26.18)

[13.42,31.37]

1	 dwt – dry weight; S.E. = standard error of the mean; C.I. = confidence interval; T.I. = tolerance interval
2	 With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.
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Table III.17.	Comparison of the proximates and fiber content in grain from MON88017 and conventional corn for combined field sites (FSANZ, 2006; 
USDA, 2004).

Component (Units)1
MON88017
Mean ± S.E.

(Range)

Control
Mean ± S.E.

(Range)

Difference (MON 88017 Minus Control) Commercial
(Range)

[99% T.I.]2
Mean ± S.E.

(Range)
95% C.I.

(Lower, Upper) p-Value

Ash (% dwt) 1.54 ± 0.077
(1.31 - 1.68)

1.59 ± 0.077
(1.23 - 1.97)

-0.049 ± 0.087
(-0.45 - 0.43) -0.23, 0.13 0.573 (1.04 - 1.86)

[0.94,1.73]

Carbohydrates (% dwt) 82.32 ± 0.40
(81.61 - 83.39)

82.33 ± 0.40
(80.67 - 83.62)

-0.019 ± 0.25
(-1.39 - 0.94) -0.62, 0.58 0.940 (81.46 - 86.68)

[79.39,89.67]

Fat, total (% dwt) 3.64 ± 0.13
(3.44 - 3.96)

3.79 ± 0.13
(3.53 - 4.36)

-0.16 ± 0.080
(-0.63 - 0.15) -0.35, 0.041 0.100 (2.38 - 4.43)

[0.74,6.01]

Moisture (% fwt) 11.10 ± 0.99
(9.03 - 13.20)

11.60 ± 0.99
(9.73 - 14.20)

-0.49 ± 0.35
(-1.10 - -0.10) -1.36, 0.37 0.212 (9.15 - 14.90)

[4.67,17.56]

Protein (% dwt) 12.51 ± 0.35
(11.63 - 13.00)

12.28 ± 0.35
(11.22 - 13.82)

0.23 ± 0.24
(-0.82 - 1.37) -0.36, 0.82 0.379 (9.26 - 13.37)

[6.20,15.35]

ADF (% dwt) 3.77 ± 0.16
(3.31 - 4.40)

3.54 ± 0.16
(2.97 - 4.69)

0.23 ± 0.18
(-0.62 - 1.16) -0.13, 0.59 0.203 (2.39 - 4.89)

[1.89,5.23]

NDF (% dwt) 12.44 ± 0.62
(10.99 - 13.58)

11.87 ± 0.62
(10.38 - 14.29)

0.57 ± 0.50
(-1.21 - 2.64) -0.66, 1.79 0.299 (8.41 - 16.54)

[3.51,21.65]

TDF (% dwt) 16.24 ± 0.71
(13.57 - 18.64)

15.40 ± 0.71
(13.18 - 17.84)

0.84 ± 0.96
(-2.39 - 4.19) -1.51, 3.20 0.414 (11.80 - 23.04)

[5.72,27.10]

1	 ADF = acid detergent fiber; NDF = neutral detergent fiber; TDF = total dietary fiber; S.E. = standard error of the mean; C.I. = confidence interval; T.I. = tolerance 
interval

2	 With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

Table III.18.	Comparison of the vitamin content1 in grain from MON88017 and conventional corn for combined field sites (FSANZ, 2006; USDA, 
2004).

Component2
MON88017
Mean ± S.E.

(Range)

Control
Mean ± S.E.

(Range)

Difference (MON 88017 Minus Control) Commercial
(Range)

[99% T.I.]3
Mean ± S.E.

(Range)
95% C.I.

(Lower, Upper) p-Value

Folic acid 0.48 ± 0.021
(0.38 - 0.60)

0.48 ± 0.021
(0.42 - 0.59)

0.0012 ± 0.030
(-0.074 - 0.11) -0.072, 0.075 0.969 (0.28 - 0.61)

[0.12,0.77]

Niacin 20.94 ± 1.20
(17.04 - 24.14)

21.75 ± 1.20
(19.08 - 23.92)

-0.81 ± 0.42
(-2.04 - 0.23) -1.67, 0.050 0.063 (14.11 - 27.77)

[3.19,34.49]

Vitamin B1 2.47 ± 0.14
(2.30 - 2.69)

3.24 ± 0.14
(2.99 - 3.60)

-0.77 ± 0.12
(-1.02 - -0.35) -1.06, -0.48 <0.001 (2.69 - 3.73)

[1.96,4.38]

Vitamin B2 1.10 ± 0.041
(0.98 - 1.22)

1.13 ± 0.041
(0.99 - 1.33)

-0.025 ± 0.037
(-0.17 - 0.14) -0.12, 0.066 0.524 (0.88 - 1.32)

[0.67,1.51]

Vitamin B6 7.16 ± 0.22
(6.57 - 8.06)

7.10 ± 0.22
(5.65 - 8.54)

0.063 ± 0.28
(-1.27 - 2.40) -0.59, 0.72 0.828 (4.93 - 7.24)

[4.29,7.84]

Vitamin E 14.15 ± 1.70
(6.08 - 16.93)

14.15 ± 1.70
(6.08 - 16.93)

0.070 ± 1.46
(-11.15 - 14.39) -2.93, 3.07 0.962 (8.09 - 21.97)

[0,29.69]

1	 mg/kg dry weight
2	 Vitamin B1 =Thiamine; Vitamin B2 =Riboflavin; Vitamin B6 =Pyridoxine; S.E. = standard error of the mean; C.I. = confidence interval; T.I.= tolerance interval
3	 With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.
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Table III.19.	Comparison of the secondary metabolites and anti-nutrients content in grain from MON88017 and conventional corn for combined field 
sites (FSANZ, 2006; USDA, 2004).

Component
MON88017
Mean ± S.E.

(Range)

Control
Mean ± S.E.

(Range)

Difference (MON 88017 Minus Control) Commercial
(Range)

[99% T.I.]1
Mean ± S.E.

(Range)
95% C.I.

(Lower, Upper) p-Value

Ferulic acid (μg/g dwt) 2175.34 ± 46.31
(1986.75 - 2275.48)

2121.05 ± 46.31
(1927.55 - 2339.71)

54.29 ± 49.66
(-200.92 - 347.92) -47.14, 155.72 0.283 (1717.17 - 2687.57)

[1415.19,3173.90]

p-Coumaric acid (μg/g dwt) 169.26 ± 7.26
(148.45 - 215.25)

154.83 ± 7.26
(141.41 - 173.24)

14.43 ± 9.88
(-14.72 - 72.55) -9.75, 38.61 0.194 (152.30 - 319.15)

[43.13,384.34]

Phytic acid (% dwt) 0.95 ± 0.043
(0.83 - 1.05)

0.89 ± 0.043
(0.72 - 1.03)

0.058 ± 0.056
(-0.15 - 0.24) -0.058, 0.17 0.309 (0.45 - 1.00)

[0.28,1.12]

Raffinose (% dwt) 0.17 ± 0.013
(0.14 - 0.20)

0.17 ± 0.013
(0.14 - 0.23)

0.00080 ± 0.0081
(-0.035 - 0.036) -0.019, 0.021 0.924 (0.073 - 0.22)

[0,0.32]

1	 With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

Table III.20.	Fatty acid profiles from the of MON88017 and an isogenic comparator (Poerschmann, Rauschen, Langer, Augustin and Górecki, 2009).

Fatty Acid (as the methyl ester) MON88017
µg/g dry weight

Near Isogenic Comparator
µg/g dry weight

Σ FAME (C12-20) 2860 2765

Σ saturated FAME (C12-20) 2250 2140

DBI1 0.52 0.48

Lauric (12:0) 59 38

Myristic (14:0) 116 126

C15-branched ~25 ~20

Pentadecanoic (15:0) 57 45

Palmitic (16:0) 1200 1060

Heptadecanoic (17:0) 40 33

Stearic (18:0) 545 720

Σ 18:1 410 350

Linoleic (18:2) 305 285

Linolenic (18:3) 51 38

Arachic (20:0) 39 37

3-OH-butyric 33 21

Benzoic 39 24

Malonic 67 54

Levulinic 7430 7080

Methyl maleate + Methylene succinate 205 215

Malic2 325 300

Aconitic 285 275

1	 DBI = double bond index = [(1 * % monoen) + (2 * % dien) + (3 * % trien)]/Σ(% saturated fatty acids).
2	 Sum of the enantiomers (L-isomer prevailing).
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Table III.21.	Nutrient composition of forage from SmartStax (MON89034 × TC1507 × MON88017 × DAS-59122-7) maize (Lundry, Burns, Nemeth 
and Riordan, 2013).

Component SmartStax mean
(Range)1

Control Mean
(Range)

Commercial Hybrids (Range)2

[99% TI]3 Literature Range4

Ash (% dry weight) 3.85
(3.08 – 4.68)

4.12
(2.98 – 6.01)

(2.80 – 6.54)
[0.16, 8.68] 1.527 – 9.638

Carbohydrate (% dry weight) 86.52
(84.00 – 88.57)

86.82
(84.12 – 89.13)

(83.38 – 88.33)
[80.33, 92.03] 76.4 – 92.1

Protein (% dry weight) 7.69
(6.80 – 8.60)

7.20
(5.39 – 8.32)

(6.27 – 8.80)
[5.01, 10.55] 3.14 – 11.57

Total fat (% dry weight) 1.94
(0.16 – 3.19)

1.86
(0.46 – 2.97)

(0.91 – 2.72)
[0, 3.67] 0.296 – 4.570

ADF (% dry weight) 30.26
(24.19 – 39.07)

29.90
(24.33 – 36.05)

(25.84 – 39.37)
[16.73, 47.63] 16.13 – 47.39

NDF (% dry weight) 41.68
(31.57 – 51.88)

43.56
(36.34 – 47.76)

(36.09 – 65.15)
[13.81, 78.53] 20.29 – 63.71

Calcium (mg/kg dry weight) 0.19
(0.11 – 0.34)

0.20
(0.13 – 0.31)

(0.15 – 0.31)
[0.0028, 0.41] 0.0714 – 0.5768

Phosphorus (mg/kg dry weight) 0.20
(0.13 – 0.24)

0.18
(0.11 – 0.23)

(0.13 – 0.24)
[0.067, 0.33] 0.0936 – 0.3704

1 The mean and range of 12 values (three replicates from each of four field sites).
2 The range of 14 values for commercial hybrids grown concurrently (three hybrids from each of four field sites and two hybrids from one field site).
3 TI = tolerance interval, specified to contain 99% of the commercial hybrid population with 95% confidence; negative limits set to zero.
4 from: Crop Composition Database (CCDB). Crop Composition Database, Version 4.2; CCDB: Washington D.C., 2011.

Table III.22.	Fatty acid composition of grain from SmartStax (MON89034 × TC1507 × MON88017 × DAS-59122-7) maize (Lundry et al., 2013).

Component SmartStax Mean
(Range)1

Control Mean
(Range)

Commercial Hybrids (Range)2

[99% TI]3 Literature Range4

Palmitic acid 10.64
(10.18−11.05)

10.56
(10.09−11.14)

(8.96−12.73)
[6.60, 15.00] 7.94−20.71

Stearic acid 2.05
(1.96−2.28)

1.935

(1.90−1.98)
(1.39−2.38)
[0.58, 2.89] 1.02−3.40

Oleic acid 30.40
(29.60−31.71)

31.245

(29.85−32.92)
(21.00−34.20)
[10.72, 42.79] 17.4−40.2

Linoleic acid 55.09
(53.39−56.03)

54.53
(52.23−56.02)

(51.11−63.09)
[44.51, 73.33] 36.2−66.5

Linolenic acid 1.00
(0.95−1.05)

0.965

(0.90−1.00)
(0.86−1.31)
[0.53, 1.54] 0.57−2.25

Arachidic acid 0.42
(0.40−0.46)

0.405

(0.37−0.42)
(0.30−0.43)
[0.23, 0.53] 0.279−0.965

Eicosenoic acid 0.26
(0.24−0.28)

0.275

(0.25−0.28)
(0.20−0.30)
[0.13, 0.34] 0.170−1.917

Behenic acid 0.14
(0.067−0.22)

0.12
(0.064−0.22)

(0.060−0.24)
[0, 0.39] 0.110−0.349

1 The mean and range of 12 values (three replicates from each of four field sites).
2 The range of 14 values for commercial hybrids grown concurrently (three replicates from each of four field sites and two replicates from one field site.)
3 TI = tolerance interval, specified to contain 99% of the commercial conventional hybrid population with 95% confidence; negative limits set to zero.
4 from: Crop Composition Database (CCDB). International Life Science Institute Crop Composition Database, Version 4.2; 

CCDB: Washington D.C., 2011.
5 Statistically and significantly different from the control at the 5% level (p<0.05).
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Table III.23.	Vitamin composition of grain from SmartStax (MON89034 × TC1507 × MON88017 × DAS-59122-7) maize (Lundry et al., 2013).

Component 
(mg/kg dry weight)

SmartStax Mean
(Range)1

Control Mean
(Range)

Commercial Hybrids (Range)2

[99% TI]3 Literature Range4

Folic acid 0.39
(0.33−0.46)

0.36
(0.29−0.43)

(0.28−0.45)
[0.15, 0.57] 0.147−01.464

Niacin 24.02
(20.11−29.35)

23.77
(19.14−27.84)

(13.88−27.09)
[6.69, 34.92] 9.36−4.290

β-Carotene 1.05
(0.89−1.19)

1.02
(0.79−1.20)

(0.54−1.48)
[0, 1.98] 0.19−46.81

Vitamin B1 2.33
(2.05−2.70)

2.635

(2.36−3.20)
(2.13−3.73)
[1.24, 4.86] 1.26−40.00

Vitamin B2 1.91
(1.23−2.76)

2.30
(1.30−2.94)

(1.28−3.68)
[0, 5.68] 0.50−2.36

Vitamin B6 5.80
(5.39−6.14)

5.79
(5.30−6.49)

(4.51−7.24)
[2.23, 8.85] 3.68−11.32

Vitamin E 8.42
(6.57−9.97)

7.72
(6.27−8.63)

(5.95−15.52)
[0, 22.92] 1.537−68.672

1 The mean and range of 12 values (three replicates from each of four field sites).
2 The range of 14 values for commercial hybrids grown concurrently (three replicates from each of four field sites and two replicates from one field site.)
3 TI = tolerance interval, specified to contain 99% of the commercial conventional hybrid population with 95% confidence; negative limits set to zero.
4 from: Crop Composition Database (CCDB). Crop Composition Database, Version 4.2; CCDB: Washington D.C., 2011.
5 Statistically and significantly different from the control at the 5% level (p<0.05).
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Table III.24.	Proximate, fiber, and mineral composition of grain from SmartStax (MON89034 × TC1507 × MON88017 × DAS-59122-7) maize (Lundry 
et al., 2013).

Component
(mg/kg dry weight)

SmartStax Mean
(Range)1

Control Mean
(Range)

Commercial Hybrids (Range)2

[99% TI]3 Literature Range4

Ash 1.24
(1.08−1.36)

1.22
(1.02−1.51)

(1.07−1.53)
[0.77, 1.81] 0.616−6.282

Carbohydrate 85.39
(84.45−85.96)

85.41
(84.60−86.53)

(82.35−86.70)
[79.24, 90.01] 77.4−89.5

Protein 9.85
(9.22−10.62)

9.78
(9.01−10.39)

(9.21−12.80)
[6.20, 15.18] 6.15−17.26

Total fat 3.52
(3.18−3.98)

3.60
(3.13−4.04)

(2.77−4.60)
[1.35, 5.45] 1.742−5.900

ADF 2.93
(2.32−4.56)

2.97
(2.02−4.22)

(2.55−3.92)
[1.60, 4.68] 1.82−11.34

NDF 11.68
(10.29−14.85)

11.62
(9.77−14.43)

(8.62−12.88)
[6.22, 15.51] 5.59−22.64

Total dietary fiber 16.91
(13.74−21.83)

16.48
(12.33−21.89)

(12.78−20.65)
[8.28, 24.21] 9.01−35.31

Calcium 37.67
(30.70−45.23)

39.67
(31.54−50.92)

(27.46−60.23)
[5.86, 83.14] 12.7−208.4

Copper 2.33
(1.63−4.21)

1.93
(1.34−3.95)

(1.51−3.42)
[0, 4.96] 0.73−18.50

Iron 21.11
(18.79−23.37)

21.86
(18.63−24.16)

(15.63−24.35)
[11.51, 29.14] 10.42−49.07

Magnesium 1159.84
(988.75−1300.90)

1170.40
(1023.97−1282.63)

(936.10−1346.80)
[659.92, 1708.83] 594.0−1940.0

Manganese 5.98
(5.14−6.46)

6.22
(5.22−7.41)

(5.50−7.15)
[4.24, 8.21] 1.69−14.30

Phosphorus 2990.96
(2440.94−3438.91)

2923.70
(2596.81−3234.96)

(2522.62−3697.86)
[1776.54, 4654.30] 1470.0−5330.0

Potassium 3185.16
(2800.90−3472.85)

3135.51
(2984.05−3442.07)

(2802.26−3887.01)
[2003.91, 4604.37] 1810.0−6030.0

Zinc 20.81
(17.44−24.44)

22.66
(18.86−27.03)

(18.64−34.20)
[10.42, 37.84] 6.5−37.2

1 The mean and range of 12 values (three replicates from each of four field sites).
2 The range of 14 values for commercial hybrids grown concurrently (three replicates from each of four field sites and two replicates from one field site.)
3 TI = tolerance interval, specified to contain 99% of the commercial conventional hybrid population with 95% confidence; negative limits set to zero.
4 from: Crop Composition Database (CCDB). Crop Composition Database, Version 4.2; CCDB: Washington D.C., 2011.
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Table III.25.	Amino acid composition of grain from SmartStax (MON89034 × TC1507 × MON88017 × DAS-59122-7) maize (Lundry et al., 2013).

Component
(mg/kg dry weight)

SmartStax Mean
(Range)1

Control Mean
(Range)

Commercial Hybrids (Range)2

[99% TI]3 Literature Range4

Alanine 0.71
(0.65−0.78)

0.72
(0.62−0.80)

(0.67−0.96)
[0.44, 1.18] 0.44−1.39

Arginine 0.42
(0.38−0.46)

0.40
(0.30−0.45)

(0.38−0.54)
[0.25, 0.61] 0.12−0.64

Aspartic acid 0.64
(0.58−0.69)

0.63
(0.51−0.70)

(0.60−0.82)
[0.39, 0.97] 0.33−1.21

Cystine/cysteine 0.20
(0.18−0.21)

0.19
(0.15−0.21)

(0.16−0.25)
[0.11, 0.30] 0.13−0.51

Glutamic acid 1.83
(1.67−1.99)

1.85
(1.60−2.03)

(1.68−2.54)
[1.08, 3.07] 0.97−3.54

Glycine 0.36
(0.33−0.38)

0.35
(0.29−0.37)

(0.34−0.45)
[0.24, 0.50] 0.18−0.54

Histidine 0.26
(0.24−0.28)

0.26
(0.22−0.28)

(0.25−0.35)
[0.19, 0.38] 0.14−0.43

Isoleucine 0.33
(0.30−0.36)

0.33
(0.28−0.38)

(0.31−0.45)
[0.20, 0.53] 0.18−0.69

Leucine 1.20
(1.09−1.31)

1.22
(1.06−1.37)

(1.11−1.73)
[0.67, 2.12] 0.64−2.49

Lysine 0.29
(0.26−0.32)

0.28
(0.21−0.30)

(0.26−0.36)
[0.17, 0.40] 0.17−0.67

Methionine 0.18
(0.17−0.19)

0.19
(0.17−0.20)

(0.17−0.26)
[0.10, 0.30] 0.12−0.47

Phenylalanine 0.49
(0.45−0.53)

0.49
(0.41−0.55)

(0.46−0.67)
[0.28, 0.83] 0.24−0.93

Proline 0.84
(0.77−0.93)

0.85
(0.72−0.96)

(0.75−1.17)
[0.47, 1.41] 0.46−1.63

Serine 0.48
(0.43−0.51)

0.48
(0.43−0.52)

(0.43−0.66)
[0.26, 0.80] 0.24−0.77

Threonine 0.33
(0.30−0.35)

0.33
(0.26−0.36)

(0.31−0.44)
[0.20, 0.51] 0.22−0.67

Tryptophan 0.065
(0.050−0.077)

0.063
(0.054−0.075)

(0.051−0.084)
[0.032, 0.10] 0.027−0.22

Tyrosine 0.31
(0.24−0.34)

0.30
(0.18−0.35)

(0.19−0.42)
[0.11, 0.56] 0.10−0.64

Valine 0.45
(041−0.48)

0.45
0.37−0.49)

(0.43−0.59)
[0.30, 0.68] 0.27−0.86

1 The mean and range of 12 values (three replicates from each of four field sites).
2 The range of 14 values for commercial hybrids grown concurrently (three replicates from each of four field sites and two replicates from one field site.)
3 TI = tolerance interval, specified to contain 99% of the commercial conventional hybrid population with 95% confidence; negative limits set to zero.
4 from: Crop Composition Database (CCDB). Crop Composition Database, Version 4.2; CCDB: Washington D.C., 2011.
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Table III.26.	Anti-nutrient and secondary metabolite composition of grain from SmartStax (MON89034 × TC1507 × MON88017 × DAS-59122-7) 
maize (Lundry et al., 2013).

Component SmartStax Mean
(Range)1

Control Mean
(Range)

Commercial Hybrids (Range)2

[99% TI]3 Literature Range4

Antinutrient

Phytic acid
(% dry weight)

0.73
(0.53−0.87)

0.71
(0.57−0.80)

(0.53−0.90)
[0.25, 1.25] 0.111−1.570

Raffinose
(% dry weight)

0.095
(0.074−0.12)

0.088
(0.028−0.12)

(0.089−0.18)
[0.026, 0.23] 0.020−0.320

Secondary Metabolite

Ferulic acid
(mg/kg dry weight)

1614.21
(956.82−1974.89)

1477.59
(930.26−1874.30)

(1422.12−2085.20)
[858.39, 2495.12] 291.9−3885.8

p-Coumaric acid
(mg/kg dry weight)

54.49
(28.12−82.91)

45.94
(28.12−86.95)

(91.06−219.73)
[0, 281.45] 53.4−576.2

1 The mean and range of 12 values (three replicates from each of four field sites).
2 The range of 14 values for commercial hybrids grown concurrently (three replicates from each of four field sites and two replicates from one field site.)
3 TI = tolerance interval, specified to contain 99% of the commercial conventional hybrid population with 95% confidence; negative limits set to zero.
4 from: Crop Composition Database (CCDB). Crop Composition Database, Version 4.2; CCDB: Washington D.C., 2011.


